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26 ABSTRACT 

27 The Arctic has undergone dramatic changes in temperature and precipitation during the 

28 Cenozoic Era, the past 65 million years (Ma) of Earth history. Arctic temperature 

29 changes during this time exceeded global average temperature changes during both warm 

30 times and cold times, supporting the concept of Arctic amplification in which strong 

31 positive feedbacks, processes that amplify a change caused by a change in the controls on 

32 global temperature, produce larger changes in temperature across the Arctic. Warm times 

33 in the past, those periods when the Arctic was either mildly or substantially warmer than 

34 present, provide important constraints on future warming in the Arctic. Past warm times 

35 are rarely ideal analogues of future warming because the forcings in the past that led to 

36 exceptional warmth were often different than the forcings expected in the coming 

37 decades. Nevertheless, paleoclimate records help to define the climate sensitivity of the 

38 planet, and to quantify Arctic amplification. 

39 At the start of the Cenozoic, 65 million years (Ma) ago, the planet was ice-free; 

40 there was no Arctic Ocean sea ice, and neither a Greenland nor Antarctic ice sheet. 

41 General cooling through the Cenozoic is attributed mainly to a slow decrease in 

42 greenhouse gases in the atmosphere. As the Arctic cooled, high elevation mountain 

43 glaciers formed as well as seasonal sea ice in the Arctic Ocean, but a detailed record of 

44 changes in the Arctic is only available for the last few million years. A global warm 

45 period in the middle Pliocene, about 3.5 Ma ago, is well represented in the Arctic, when 

46 extensive deciduous forests occupied lands now only capable of supporting polar desert 

47 tundra. A significant reorganization of global oceanic and atmospheric circulation 

48 occurred between 3 and 2.5 Ma ago, accompanied by the development of the first 
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49 continental ice sheets over North America and Eurasia, with icebergs from these ice 

50 sheets delivering rock fragments into the central North Atlantic Ocean. This change 

51 marks the onset of the Quaternary Period (2.6 to 0 Ma ago), generally equated with “ice-

52 age” time. From ~2.7 to ~0.8 Ma ago, the ice sheets came and went about every 41 

53 thousand years (ka), the same timing as changes in the tilt of Earth’s axis, with ice sheets 

54 growing when Earth’s tilt was at a minimum, and melting when tilt was at a maximum. 

55 For the past 800 ka, ice sheets have grown larger and ice age times have been longer, 

56 lasting ~100 ka, separated by brief warm periods of ~10 ka duration. The cause of this 

57 shift remains debated. The relative warm times over which human civilization has 

58 developed is during the most recent of these 10 ka warm intervals, the Holocene (~11.5 

59 to 0 ka ago). The penultimate warm interval, ~130 to 120 ka ago, occurred when solar 

60 energy in summer was greater than at any time in the current warm interval. As a 

61 consequence, the Arctic was ~5 °C warmer than at present, and almost all glaciers melted 

62 completely, except the Greenland Ice Sheet, which was reduced in size substantially from 

63 its present extent. Although sea ice is difficult to reconstruct, the available evidence 

64 suggests that the central Arctic Ocean retained a permanent ice cover, even though the 

65 flow of warm Atlantic water into the Arctic Ocean may have been greater than during the 

66 present warm interval. 

67 The last glacial maximum peaked about 20 ka ago when the Arctic was ~20 °C 

68 colder than present. Ice recession was well underway by 16 ka ago, and most of the 

69 Northern Hemisphere ice sheets melted by 7 ka ago. Solar energy in summer rose 

70 steadily from 20 ka to a maximum (10% higher than at present) 11 ka ago, and has been 

71 decreasing since then, as the precession of the equinoxes has tilted the Northern 

Chapter 5 Peer Review Copy 4 



        
      

 

      

           

          

          

         

             

             

          

               

            

           

            

         

   

       

             

               

            

          

         

  

  

             

             

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

72 Hemisphere farther from the sun in summer. The extra energy received in summer in the 

73 early Holocene resulted in warmer summers throughout the Arctic, ranging from 1 to 3 

74 °C above 20th Century averages, enough to completely melt many small glaciers 

75 throughout the Arctic, although Greenland was only slightly smaller than present. 

76 Summer sea ice limits were significantly less than their 20th Century average, and the 

77 flow of Atlantic water into the Arctic Ocean was substantially greater. As summer solar 

78 energy decreased in the second half of the Holocene, glaciers re-established or advanced, 

79 sea ice became more extensive, and the flow of warm Atlantic water into the Arctic 

80 Ocean became reduced. Late Holocene cooling reached its nadir during the Little Ice 

81 Age (~1250 to 1850 AD), when most Arctic glaciers reached their maximum Holocene 

82 extent. Warming over the past century has resulted in Arctic-wide glacier recession, the 

83 northward advance of terrestrial ecosystems, and the reduction of perennial Arctic Ocean 

84 sea ice. 

85 Paleoclimate reconstructions of Arctic temperatures compared to global 

86 temperature changes during four key intervals over the past 4 Ma allows a quantitative 

87 estimate of Arctic amplification. These data suggest that Arctic temperature change is 3 

88 to 4 times the global average temperature change during both cold and warm departures. 

89 This relation indicates that Arctic temperatures are likely to increase dramatically over 

90 the next century if global warming forecasts are correct. 

91 

92 5.1 Introduction 

93 Recent instrumental records show that temperatures across much of the far north have 

94 risen more rapidly over the last few decades than in lower latitudes, and often about twice as fast 
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95 (Delworth and Knutson, 2000; Knutson et al., 2006). The remarkable reduction in Arctic Ocean 

96 summer sea ice in 2007 (Fig. 5.1) has outpaced the most recent predictions from available 

97 climate models (Stroeve et al., 2008), but is in concert with widespread reductions in glacier 

98 length, increased borehole temperatures, increased coastal erosion, changes in vegetation and 

99 wildlife habitats, the northward migration of marine life, and permafrost degradation. Based on 

100 the current trend of increasing greenhouse gases over the past century, climate models forecast 

101 continuing warming into the foreseeable future (Fig. 5.2) and a continuing amplification of 

102 global signals in the Arctic (Serreze and Francis, 2006). As outlined by the Arctic Climate 

103 Impact Assessment (ACIA, 2004), the sensitivity of the Arctic to changed forcing is due to 

104 strong positive feedbacks in the Arctic climate system (see Chapter 4.3). These feedbacks 

105 produce large amplification of changes to the climate of the Arctic, while also having impacts on 

106 the global climate system. 

107 Because the strong Arctic feedbacks act on climate changes caused by nature or by 

108 humans, natural variability and human-caused changes are large in the Arctic, and separating 

109 them requires understanding and characterization of the natural variability. The short time 

110 interval over which instrumental data are available from the Arctic is not sufficient to 

111 characterize that natural variability, so a paleoclimatic perspective is required. 

112 This chapter focuses primarily on the history of temperature and precipitation in 

113 the Arctic. These are important in their own right, and set the stage for understanding the 

114 histories of the Greenland ice sheet and the Arctic sea ice, which are described in 

115 chapters 7 and 8. Because of the great interest in rates of change, and because of some 

116 technical details in extracting rate of change from the broad history of temperature or 

117 precipitation, careful consideration of rates of change is deferred to chapter 6. 
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118 

119 Before providing the history of temperature and precipitation in the Arctic, this 

120 chapter supplements the discussion in chapter 4 on forcings, feedbacks, and proxies by 

121 providing additional information on those aspects particularly relevant to the histories of 

122 temperature and precipitation in the Arctic. The climate history of the past 65 Ma is then 

123 summarized, focusing on temperature and precipitation changes that span the full range 

124 of the Arctic’s natural climate variability and response under different forcings. Special 

125 emphasis has been placed on relevant intervals in the past with a mean climate state 

126 warmer than our own. Where possible, causes of the changes are discussed. From these 

127 summaries, it is possible to estimate the magnitude of polar amplification, and to 

128 characterize the response of the Arctic system to global warm times. 

129 

130 5.2 Feedbacks Influencing Arctic Temperature and Precipitation 

131 

132 The most commonly used measure of the climate is the mean surface air temperature 

133 (Fig. 5.3), which is influenced by climate forcings and climate feedbacks. As discussed 

134 with references in Chapter 4.3, important forcings over the past several millennia have 

135 been changes in the distribution of solar radiation that resulted from features of Earth’s 

136 orbit, changes in solar irradiance, volcanism, and changes in atmospheric greenhouse-gas 

137 concentrations. On longer time scales (tens of millions of years), the long-term increase 

138 in the solar constant (30% increase in the past 4600 Ma) was important, and the 

139 redistribution of continental landmasses caused by plate tectonics also affected the 

140 planetary energy balance. 
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141 How much the temperature changes in response to a forcing of a given magnitude 

142 (or in response to the net magnitude of a set of forcings in combination) depends on the 

143 sum of all of the feedbacks. Feedbacks may act in days or less, or over millions of years. 

144 The focus here is on the faster ones. For example, a warming may have many causes 

145 (brighter sun, higher concentration of greenhouse gases in the atmosphere, less blocking 

146 of the sun by volcanoes, etc.). Whatever the cause, warmer air moving over the ocean 

147 tends to entrain more water vapor, which itself is a greenhouse gas, so having more water 

148 vapor in the atmosphere leads to a further rise in global mean surface temperature 

149 (Pierrehumbert et al., 2007). The discussion below focuses on those feedbacks that are 

150 especially linked to the Arctic. We include several processes linked to ice-age cycling 

151 here, because of the dominant role of northern land in supporting ice-sheet growth, 

152 although ice-age processes (like some of the other processes discussed below) clearly 

153 extend well beyond the Arctic. 

154 

155 5.2.1 Ice-albedo feedback 

156 Ice and snow present highly reflective surfaces. The albedo of a surface is 

157 defined as the reflectivity of that surface to the wavelengths of solar radiation. Fresh ice 

158 and snow have the highest albedo of any widespread surfaces on the planet (Fig. 5.4), so 

159 it is apparent that changes in the seasonal and areal distribution of snow and ice will exert 

160 strong influences on the planetary energy balance (Peixoto and Oort, 1992). Open ocean, 

161 on the other hand, has a low albedo, absorbing almost all of the solar energy when the 

162 sun angle is high. Changes in albedo are most important in Arctic summer, when solar 

163 radiation is at a maximum, whereas changes in the winter albedo have little influence on 
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164 the energy balance because little solar radiation reaches the surface then. In general, 

165 warming reduces ice and snow whereas cooling allows them to be more extensive, so the 

166 changes in ice and snow act as positive feedbacks to amplify climate changes (e.g., 

167 Lemke et al., 2007). 

168 

169 5.2.2 Ice-insulation feedback 

170 In addition to its effects on albedo, sea ice also causes a positive insulation 

171 feedback, primarily in the wintertime. Ice is effective at blocking heat transfer between 

172 relatively warm ocean (at or above the freezing point) and cold atmosphere (which, in the 

173 Arctic winter, averages -40 °C (Chapman and Walsh, 2007). If sea ice is removed by 

174 warming, then the ocean heats the overlying atmosphere in winter months, amplifying 

175 warming. 

176 Feedbacks involving snow insulation of the ground may also be important, through 

177 their effects on vegetation and on permafrost temperature and its influence on storage or 

178 release of greenhouse gases, as described in the next subsections (e.g., Ling and Zhang, 

179 2007). 

180 

181 5.2.3 Vegetation feedbacks 

182 A related terrestrial feedback involves changing vegetation. A warming climate 

183 can result in a transition from tundra to shrub vegetation. However, the shrub vegetation 

184 has a lower albedo than tundra, causing further warming (Fig. 5.5) (Chapin et al., 2005; 

185 Goetz et al., 2007). Interactions involving the boreal forest and deciduous forest can also 

186 be important (Bonan et al., 1992; Rivers and Lynch, 2004). 
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187 

188 5.2.4 Permafrost feedbacks 

189 Additional but poorly understood feedbacks in the Arctic involve changes in cloud 

190 cover and the release of carbon dioxide from the land surface associated with changing 

191 extent of permafrost. Feedbacks between permafrost and climate became widely 

192 recognized only in recent decades, building on the works of Kvenvolden (1988; 1993), 

193 MacDonald (1990) and Haeberli et al. (1993). As permafrost thaws under a warmer 

194 climate (Fig. 5.6), CO2 and methane trapped in permafrost can be released to the 

195 atmosphere (e.g., Vörösmarty, 2001; Smith et al. 2004, Thomas et al, 2002, Archer, 

196 2007). Since CO2 and methane are greenhouse gases, atmospheric temperature is likely to 

197 increase in turn, a positive feedback. 

198 

199 5.2.5 Freshwater balance feedbacks and thermohaline circulation 

200 The Arctic Ocean is almost completely surrounded by continents (Fig. 5.7). 

201 Because precipitation is low over the ice-covered ocean (Serreze et al., 2006), the 

202 freshwater input is largely controlled by the runoff from large rivers in Eurasia and North 

203 America, and the inflow of relatively low-salinity Pacific water through the Bering Strait 

204 The Yenisey, Ob, and Lena are among the nine largest rivers on Earth, and there are 

205 several other large rivers, including the Mackenzie, entering the Arctic Ocean (see 

206 Vörösmarty et al., 2008). The freshwater discharged by these rivers maintains low 

207 salinities on the broad, shallow, and seasonally ice-free seas bordering the Arctic Ocean. 

208 The largest of these border the Eurasian continent, where they serve as the dominant 

209 production areas of sea ice in the Arctic Ocean (for some fundamentals on Arctic sea ice, 
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210 see Barry et al., 1993). Sea ice formed along the Eurasian margin drifts toward Fram 

211 Strait, with a transit time of 2-3 years in the current regime. In the Amerasian part of the 

212 Arctic Ocean, the clockwise rotating Beaufort Gyre is the dominant ice-drift feature (see 

213 Fig. 8.1). However, the transport pathway for most of the freshwater entering the Arctic 

214 Ocean is the surface layer (the upper 50 m) of the Arctic Ocean (e.g., Schlosser et al., 

215 2000). Low-salinity surface waters are exported from the Arctic Ocean to the northern 

216 North Atlantic (Nordic Seas) through western Fram Strait, after which they follow the 

217 east coast of Greenland and exit the Nordic Seas through Denmark Strait. A smaller 

218 outflow of freshwater occurs through the inter-island channels of the Canadian Arctic 

219 Archipelago, eventually reaching the North Atlantic via the Labrador Sea. The low-

220 saline outflow from the Arctic Ocean is compensated by a relatively warm inflow of 

221 saline Atlantic water through eastern Fram Strait. Despite its warmth, Atlantic water has 

222 sufficient density due to its high salinity that it is forced to sink beneath the colder, but 

223 much fresher surface water upon entering the Arctic Ocean. North of Svalbard, Atlantic 

224 water spreads as a boundary current into the Arctic Basin, forming the Atlantic Water 

225 Layer (Morison et al. 2000). The strong vertical gradients of salinity and temperature in 

226 the Arctic Ocean result in a relatively stable stratification. However, recent observations 

227 have shown that in some areas in the Eurasian part of the Arctic Ocean, the warm 

228 Atlantic layer is in direct contact with the surface mixed layer (Rudels et al., 1996; Steele 

229 and Boyd, 1998; Schauer et al., 2002), thereby promoting vertical heat transfer to the 

230 Arctic atmosphere in winter. In recent decades circum-Arctic glaciers and ice sheets have 

231 been losing mass (more snow and ice melting in summer than accumulates as snow in 

232 winter; Dowdeswell et al., 1997; Rignot & Thomas, 2002; Meier et al., 2007), and river 
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233 runoff to the Arctic Ocean has been increasing since the 1930s (Peterson et al., 2002). 

234 These factors have led to increased freshwater export from the Arctic Ocean (Peterson et 

235 al., 2006). Recent studies suggest that changes in river runoff play an important role in 

236 the stability of Arctic Ocean stratification (Steele and Boyd, 1998; Martinson and Steele, 

237 2001; Björk et al., 2002; Boyd et al., 2002; McLaughlin et al., 2002; Schlosser et al., 

238 2002). 

239 In the north Atlantic, primarily in the Nordic Seas and the Labrador Sea, 

240 wintertime cooling of the relatively warm and salty waters leads to density increase 

241 causing sinking of waters that then flow southward to participate in the global 

242 thermohaline circulation (“thermo” for temperature and “haline” for salt, the two 

243 components that determine density; this circulation system also is often referred to as the 

244 meridional overturning circulation or MOC). Continuing surface flow from the south 

245 replaces the water sinking in the Nordic and Labrador Seas, causing persistent open water 

246 rather than sea-ice cover in these regions. In turn, this lack of sea ice causes notably 

247 warmer conditions especially in wintertime over and near the North Atlantic and 

248 extending downwind across Europe and beyond (Seager et al., 2002). Salt rejected from 

249 sea ice growing nearby also may contribute to density increase and water sinking. 

250 If the surface waters are made sufficiently less salty by an increase in freshwater 

251 from runoff, ice melt, or direct precipitation, the rate of sinking of those surface waters 

252 will diminish or stop (e.g., Broecker et al., 1985). Results of numerical models indicate 

253 that an increased freshwater runoff into the Arctic Ocean and the North Atlantic, along 

254 with a warming of surface waters in the northern high latitudes, will weaken the 
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255 thermohaline circulation in the north Atlantic, with consequences for marine ecosystems 

256 and energy transport (e.g., Rahmstorf, 1996, 2002; Marotzke, 2000; Schmittner, 2005). 

257 Reducing the rate of North Atlantic thermohaline circulation may have global as 

258 well as regional effects (e.g., Obata, 2007). Oceanic overturning is an important 

259 mechanism for transferring atmospheric CO2 to the deep ocean. Reducing the rate of deep 

260 convection in the ocean would result in a higher proportion of anthropogenic produced 

261 CO2 remaining in the atmosphere. Similarly, a slowdown in thermohaline circulation 

262 would influence the turnover of nutrients from the deep ocean, with potential 

263 consequences across the Pacific Ocean. 

264 

265 5.2.6 Feedbacks over glacial-interglacial cycles 

266 The growth and melting of immense ice sheets, which at their peak size covered 

267 ~30% of the modern land area including the modern sites of New York and Chicago, 

268 were paced by the orbital variations often called Milankovitch forcings (e.g., Imbrie et 

269 al., 1993), and described in chapter 4. There is little doubt that the orbital forcings drove 

270 this glacial-interglacial cycling, but there is a remarkably rich and varied literature on the 

271 detailed mechanisms (see, e.g., Roe, 1999). 

272 The generally accepted explanation of the glacial-interglacial cycling is that ice 

273 sheets grew when limited summer sunshine at high northern latitudes allowed survival of 

274 accumulated snow, with melting when high summer sunshine in the north melted the ice. 

275 The north is more important than the south because the Antarctic has remained ice-

276 covered during this cycling of the last million years and more, and there is no other high-

277 latitude land in the south on which ice sheets could grow. 
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278 The increased reflectivity from expanded ice contributed to cooling. This is the 

279 ice-albedo feedback as described above, but with slower response controlled by the flow 

280 of the great ice sheets. The ice ages also experienced more atmospheric dust than did the 

281 intervening warm interglacials, with the additional ice-age dust contributing to cooling by 

282 blocking sunlight. Ice-sheet growth and the orbital changes led to complex changes in 

283 the ocean-atmospheric system that shifted carbon dioxide from the air to the ocean, 

284 lowering the atmospheric greenhouse effect. The carbon-dioxide changes lagged the 

285 orbital forcing, and so carbon dioxide was clearly a feedback, but the large global cooling 

286 of the ice ages has been successfully explained only if the reduced greenhouse effect is 

287 included (Jansen et al., 2007.) By analogy, overspending a credit card induces debt, 

288 which is made larger by interest payments on that debt. The interest payments clearly lag 

289 the debt in time, did not cause the debt, but contribute to the size of the debt, and the debt 

290 cannot be explained quantitatively unless the interest payments are included. 

291 Abrupt climate changes have been associated with the ice-age cycles. The most-

292 prominent and best-known of these are linked to jumps in the wintertime extent of sea ice 

293 in the north Atlantic, which in turn were linked to changes in the large-scale circulation 

294 of the ocean (e.g., Alley, 2007), as described in the previous section. The associated 

295 temperature changes were very large around the north Atlantic (to 10oC or more) but 

296 much smaller in remote regions, and exhibited an opposite sign in the far south (so 

297 northern cooling was accompanied by slight southern warming); hence, the globally 

298 averaged temperature changes were small, probably linked primarily to ice-albedo 

299 feedback and small changes in the strength of the greenhouse effect. As reviewed by 

300 Alley (2007), the large ice-age ice sheets seem to have been important in these abrupt 
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301 swings both by triggering them, and by creating conditions under which triggering was 

302 easier; although such events may remain possible, they are less likely without the large 

303 ice sheet on Canada. 

304 

305 5.2.7 Arctic Amplification 

306 The positive feedbacks outlined above amplify the Arctic response to climate forcings. 

307 The ice-albedo feedback is potentially strong in the Arctic because so much snow and ice 

308 occur there (see Serreze and Francis, 2006 for additional discussion); if conditions are too 

309 warm for any snow to form, there can be no ice-albedo feedback. Climate models 

310 initialized from modern or similar conditions and forced in various ways are in 

311 widespread agreement that global temperature trends are amplified in the Arctic, with the 

312 largest changes over the Arctic Ocean during the cold season (autumn through spring) 

313 (e.g., Manabe and Stouffer, 1980; Holland and Bitz, 2003; Meehl et al., 2007). Summer 

314 changes over the Arctic Ocean are relatively damped, although summer changes over 

315 Arctic lands may be substantial (Serreze and Francis, 2006). The strong wintertime 

316 changes over the Arctic Ocean are linked to the insulating character of sea ice. 

317 Think first of an unperturbed climate. During summer, solar energy is used to 

318 melt the sea ice cover. As the ice cover melts, areas of open water are exposed. The 

319 albedo of the open water areas is much lower than that of sea ice, so the open water areas 

320 gain heat. Since much of the solar energy goes into ice melt and warming the ocean, the 

321 surface air temperature does not rise much, and indeed, over the melting ice, stays fairly 

322 close to the freezing point. Through autumn and winter, when there is little or no solar 
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323 energy, this ocean heat is released back to the atmosphere. There is a further release of 

324 heat back to the atmosphere from the formation of sea ice itself. 

325 However, if the climate warms (e.g., through the effects of higher greenhouse gas 

326 concentrations) the summer melt season lengthens and intensifies, meaning more areas of 

327 low-albedo open water in summer to absorb solar radiation. With more heat gained in the 

328 upper ocean, more heat is released back to the atmosphere in autumn and winter, 

329 expressed as a rise in air temperature. Furthermore, with more heat in the ocean, the ice 

330 that forms in autumn and winter is thinner than before. This thinner ice is more easily 

331 melted in summer, meaning even more low-albedo open water areas to absorb solar 

332 radiation, meaning even larger releases of heat to the atmosphere in autumn, even thinner 

333 ice the next spring, and so on. The process can also work in reverse. An initial Arctic 

334 cooling means less summer melt and a smaller area covered by low-albedo open water. 

335 With a smaller summer heat gain in the ocean, there is less heat released back to the 

336 atmosphere in autumn and winter, meaning a further fall in air temperatures. 

337 While the albedo feedback over the ocean seems to dominate, there is also an 

338 albedo feedback over land which is much more direct. Under a warming climate, one 

339 expects an earlier spring snowmelt period, meaning earlier exposure of low-albedo 

340 tundra, shrub, and forest cover, fostering further spring warming. Similarly, later 

341 formation of autumn snow cover will foster further autumn warming. With more snow-

342 free days, there is a longer period for surface warming, implying warmer summers. 

343 Again, the process can work in reverse, where initial cooling leads to more snow cover, 

344 fostering further cooling. Collectively, these processes result in stronger net positive 

Chapter 5 Peer Review Copy 16 



        
      

 

      

         

      

             

                

           

           

  

        

        

           

       

          

           

           

    

      

             

             

       

             

           

   

  

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

345 feedbacks to forced temperature change (regardless of forcing mechanism) than typical 

346 globally, thereby producing “arctic amplification”. 

347 Over longer times, growth of an ice sheet such as the Laurentide ice sheet on 

348 Canada, or melting of an ice sheet such as that on Greenland, can occur. This in turn can 

349 influence albedo, freshwater fluxes to the ocean, broad patterns of atmospheric 

350 circulation, greenhouse-gas storage or release in the ocean, and more. 

351 

352 5.3 Proxies of Arctic Temperature and Precipitation 

353 Temperature and precipitation are especially important climate variables. Climate 

354 change is typically driven by changes in key forcing factors, which are then amplified or 

355 retarded by regional feedbacks that impact temperature and precipitation (section 5.2 and 

356 4.2). Because feedbacks exhibit strong regional variability, spatially variable responses 

357 to hemispherically symmetric forcing are common across the Arctic (e.g., Kaufman et al., 

358 2004). Consequently, spatial patterns of temperature and precipitation must be 

359 reconstructed regionally. 

360 Reconstructing temperature and precipitation in pre-industrial times requires 

361 reliable proxies (see section 4.4 for a general discussion of proxies) that can be used to 

362 derive qualitative, or preferably, quantitative estimates of past climates. To capture the 

363 expected spatial variability, proxy climate reconstructions must be spatially distributed 

364 and span a wide range of geological time. In general, a multi-proxy approach to 

365 reconstructing past climates provides the most robust evidence for past changes in 

366 temperature and precipitation. 

367 
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368 5.3.1 Proxies for Reconstruction of Temperature 

369 

370 5.3.1a Vegetation/pollen records Estimates of past temperature from 

371 data that describe the distribution of vegetation (primarily fossil pollen assemblages but 

372 also plant macrofossils such as fruits and seeds) may be relative (warmer/colder) or 

373 quantitative (number of degrees of change). Most information pertains to the growing 

374 season, as plants are dormant in the winter and so less influenced by climate than during 

375 the growing season (but see below). For example, evidence of boreal forest vegetation 

376 (indicated by the presence of one or more boreal tree species) would be associated with 

377 warmer growing seasons than evidence of treeless tundra—and the general position of 

378 northern treeline approximates today to the location of the July 10 ºC isotherm. 

379 Indicator species are species with well-studied and relatively restricted modern 

380 climatic ranges. The appearance of these species in the fossil record indicates that a 

381 certain climatic milestone was reached, such as exceeding a minimum summer 

382 temperature threshold for successful growth or a winter minimum temperature of freezing 

383 tolerance (Fig. 5.8). This methodology was developed early for Scandinavia (Iversen, 

384 1944); Matthews et al. (1990) used indicator species to constrain temperatures during the 

385 last interglaciation in northwest Canada, and Ritchie et al. (1983) used indicator species 

386 to highlight early Holocene warmth in northwest Canada. The technique has been used 

387 extensively with fossil insect assemblages. 

388 Methodologies for the numerical estimation of past temperatures from pollen 

389 assemblages follow one of two approaches. The first is the inverse-modeling approach, 

390 in which fossil data from one or more localities are used to provide temperature estimates 
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391 for those localities (this approach also underlies the relative estimates of temperature 

392 described above). A modern ‘calibration set’ of data (in this case pollen assemblages) is 

393 related to observed modern temperature by equations, and the functions thus obtained are 

394 then applied to fossil data. This method has been developed and applied in Scandinavia 

395 (e.g., Seppä et al. 2004). A variant of the inverse approach is analogue analysis, in which 

396 a large modern dataset with assigned climate data forms the basis for comparison with 

397 fossil spectra. Good matches are derived statistically, and the resulting set of analogues 

398 provides an estimate of the past mean temperature and accompanying uncertainty 

399 (Anderson et al. 1989, 1991). 

400 Inverse modeling relies upon observed modern relationships. In the past, some 

401 plant species occurred in abundances that are not observed today, and the fossil pollen 

402 spectra they produced may have no recognizable modern counterpart—so-called ‘no-

403 analogue’ assemblages. Outside the envelope of modern observations, fossil pollen 

404 spectra, described in terms of pollen abundance, cannot be reliably related to past climate. 

405 This problem led to the adoption of a second approach to estimating past temperature (or 

406 other climate variables) called forward modeling. The pollen data are not used to develop 

407 numerical values but are used to test a ‘hypothesis’ about the status of past temperature 

408 (climate). The hypothesis may be a conceptual model of the status of past climate, but 

409 typically it is represented by a climate-model simulation for a time in the past. The 

410 climate simulation drives a vegetation model that assigns vegetation cover on the basis of 

411 bioclimatic rules (such as the winter minimums or required level of summer growing 

412 temperatures mentioned above). The resultant map is compared with a map of past 

413 vegetation developed from the fossil data. The philosophy of this approach is described 
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414 by Prentice and Webb (1998). Such data-model comparisons have been carried out for 

415 the Arctic by Kaplan et al (2003) and Wohlfahrt et al. (2004). The great advantage of 

416 this approach is that underlying the model simulation are hypothesized climatic 

417 mechanisms; this allows not only the description but also an explanation of past climate 

418 changes. 

419 

420 5.3.1b Marine Isotopic records The oxygen isotope composition of planktic 

421 foraminifera accurately record the oxygen isotope composition (δ18O: the proportion of 

422 the heavy isotope, 18O, relative to the lighter, more abundant isotope, 16O) of ambient 

423 seawater, modulated by the temperature at which the organisms build their calcareous 

424 shells (Epstein et al., 1953; Shackleton, 1967; Erez and Luz, 1982; Fig. 5.9). However, 

425 the low horizontal and vertical temperature variability found in Arctic Ocean surface 

426 waters (<-1°C) has little effect on the oxygen isotope composition of N. pachyderma 

427 (sin.) (max. 0.2‰, according to Shackleton, 1974). Since meteoric waters, discharged 

428 into the ocean by precipitation and (indirectly) by river runoff, have considerably lower 

429 δ18O values than do ocean waters, an excellent correlation exists between salinity and 

430 oxygen isotopic composition of Arctic surface waters (Bauch et al., 1995). Accordingly, 

431 the spatial variability of surface water salinity across the Arctic Ocean is recorded today 

432 by the δ18O of planktic foraminifers (Spielhagen and Erlenkeuser, 1994; Bauch et al., 

433 1997). 

434 In paleorecords (sediment cores) from the deep Arctic Ocean, significant 

435 variability in the δ18O values of planktic foraminifera is observed over millennial 

436 timescales (e.g., Aksu, 1985; Scott et al., 1989; Stein et al., 1994; Nørgaard-Pedersen et 
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437 al., 1998; 2003; 2007a, b; Polyak et al., 2004; Spielhagen et al., 2004; 2005). The 

438 observed variability in foraminifera δ18O commonly exceeds the change in the isotopic 

439 composition of seawater resulting from just the storage of isotopically light freshwater in 

440 glacial ice sheets (ca. 1.3‰ δ18O) on glacial-interglacial time scales (Fairbanks, 1989). 

441 Changes over time in freshwater balance of the near-surface waters, and in temperature of 

442 those waters, are both recorded in the δ18O values of foraminifera shells. Moreover, in 

443 cases where independent evidence of a regional warming of surface waters is available 

444 (e.g., in the eastern Fram Strait during the last glacial maximum; Nørgaard-Pedersen et 

445 al., 2003), this warming is thought to have been caused by a stronger influx of saline 

446 Atlantic Water. Because salinity influences δ18O of foraminfera shells from the Arctic 

447 Ocean more than temperature does, reconstructing temperatures in the past from 

448 systematic variations in calcite δ18O in Arctic Ocean sediment cores is difficult. 

449 

450 5.3.1c Lacustrine Isotopic Records Isotopic records preserved in lake sediment 

451 provide important paleoclimatic information on landscape change and hydrology. Lakes 

452 are common in high-latitude landscapes, and continuous sediment deposition provides 

453 uninterrupted, high-resolution records of past climate (Fig. 5.10). 

454 Oxygen isotopic ratios of precipitation reflect climatic processes, and especially 

455 temperature (see 5.3.1d). The oxygen isotope ratios of shells and other materials in lakes 

456 primarily reflect ratios of the lake water. The isotopic ratios of the lake water are 

457 dominantly controlled by the isotopic ratios of precipitation, unless evaporation from the 

458 lake is sufficiently rapid compared to inflow of new water to shift the isotopic ratios 

459 towards heavier values by preferentially removing isotopically lighter water. Those lakes 
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460 with streams entering and leaving (open lakes) have isotopic ratios that are generally not 

461 affected very much by evaporation, as do some lakes supplied only by water flow 

462 through the ground (closed lakes), allowing isotopic ratios of shells and other materials in 

463 these lakes to be used in reconstructions of climate, especially temperature. However, 

464 some closed lakes are affected notably by evaporation, in which case the isotopic ratios 

465 of the lake are at least in part controlled by lake hydrology. Unless independent evidence 

466 is available on lake hydrology, quantitative interpretation of δ18O is difficult. 

467 Consequently, δ18O is normally combined with additional climate proxies to constrain 

468 other variables and strengthen interpretations. For example, in rare cases, ice core records 

469 are located near lakes and provide an oxygen isotope record for direct comparison (Fisher 

470 et al., 2004; Anderson and Leng, 2004). (Fig. 5.11). Oxygen-isotopic ratios are relatively 

471 easy to measure on carbonate shells or other carbonate materials. Greater difficulty, 

472 limiting accuracy or time-resolution of the records produced, is associated with analyses 

473 of oxygen isotopes in silica from diatom shells (Leng et al., 2004) and in organic matter 

474 (Sauer et al., 2001; Anderson et al., 2001). Additional uncertainty arises with organic 

475 matter because although some of it grew in the lake, some was also washed in and may 

476 have been stored on the landscape for some time previously. 

477 

478 5.3.1d Ice cores The most common way to deduce temperature from ice cores 

479 (Fig. 5.12) is through their water isotopic content, i.e. the ratio of H2
18O/H2

16O, or of 

480 HDO/H2O (where D is deuterium, 2H). The ratios are expressed as δ18O and δD 

481 respectively, relative to standard mean ocean water (SMOW). Pioneering studies 

482 (Dansgaard, 1964) showed how δ18O is related to climatic variables in modern 
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483 precipitation. At high latitudes both δ18O and δD are generally considered to represent 

484 the mean annual temperature at the core site, whereas the use of both measures together 

485 offers additional information about conditions at the source of the water vapor (e.g., 

486 Dansgaard et al., 1989). 

487 The underlying idea is that an air mass loses water vapor by condensation as it 

488 travels from a warm source to a cold (polar) site (Fig. 5.13). Water containing the heavy 

489 isotopes has a lower vapor pressure, so the heavy isotope preferentially condenses and 

490 rains or snows out, causing the air to become progressively more depleted of the heavy 

491 isotope as the air mass moves to colder sites. It can easily be shown from spatial surveys 

492 (Johnsen et al., 1989) and indeed, from modeling studies using models enabled with 

493 water isotopes (e.g., Hoffmann et al., 1998; Mathieu et al., 2002) that a good spatial 

494 relationship between temperature and water isotope ratio exists, 

495 δ =aT + b 

496 where T is mean annual surface temperature, and δ is annual mean δ18O or δD value in 

497 precipitation in the polar regions, with the slope, a, having values typically around 0.6 for 

498 Greenland for δ18O. 

499 Temperature is not the only factor that can affect isotopic ratios, however, with 

500 changes in the season when snow falls, in the source of the water vapor, and other things 

501 potentially important (Jouzel et al., 1997; Fig. 5.14). For this reason, it is common 

502 whenever possible to calibrate the isotopic ratios using additional paleothermometers. 

503 Over short times, instrumental records of temperature can be compared to isotopic ratios 

504 (e.g., Shuman et al., 1995). The few comparisons that have been done (summarized in 

505 Jouzel et al. (1997) tend to show slightly lower δ/T gradients than the spatial one. 
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506 Accurate reconstructions of past temperature, but with low time resolution, are obtained 

507 from the use of borehole thermometry. The center of the Greenland ice sheet has not 

508 finished warming from the ice age, and the remaining cold temperatures reveal how cold 

509 the ice age was (Cuffey et al., 1995; Johnsen et al., 1995). Additional paleothermometers 

510 are available using the thermal diffusion effect, whereby gas isotopes are separated 

511 slightly when an abrupt temperature change at the surface creates a temperature 

512 difference between the surface and the region a few tens of meters down where bubbles 

513 are pinched off from the interconnected pore spaces in old snow (called firn). The size of 

514 the gas-isotopic shift reveals the size of an abrupt warming, and the number of years 

515 between the indicators of an abrupt change in the ice and in the bubbles trapped in ice 

516 reveals the temperature before the abrupt change, if the snowfall rate before the abrupt 

517 change is known (Severinghaus et al., 1998; Huber et al., 2006; Severinghaus and Brook, 

518 1999). These methods show that the value of the δ/T slope for many of the large changes 

519 recorded in Greenland ice cores was considerably less (typically by a factor of 2) than the 

520 spatial value, probably because of a relatively larger reduction in winter snowfall in 

521 colder times (Cuffey et al., 1995; Werner et al., 2000; Denton et al., 2005). The actual 

522 temperature changes were therefore larger than would be predicted from the standard 

523 calibration. 

524 In summary, water isotopes in polar precipitation are a reliable proxy for mean 

525 annual air temperature, but for quantitative use, some means of calibrating them, either 

526 against instrumental data, by using an alternative estimate of temperature change, or 

527 through modeling, is always required for samples older than the Holocene. 

528 

Chapter 5 Peer Review Copy 24 



        
      

 

      

            

             

             

            

           

           

         

             

      

    

  

              

         

     

             

             

        

           

               

            

         

          

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

529 5.3.1e Fossil Assemblages and Sea Surface Temperatures Different species 

530 live preferentially at different temperatures in the modern ocean, and this almost certainly 

531 was true in the past. Modern observations can be used to learn the preferences of species. 

532 The mathematical expression of these preferences plus the history of where the various 

533 species lived in the past can then be used to interpret past temperatures (Imbrie and Kipp, 

534 1971; CLIMAP, 1981). This is primarily applied to near-surface (planktic) species, and 

535 especially to foraminifera, diatoms and dinoflagellates. Both the presence or absence, 

536 and the relative abundance, of species can be used. Such methods are now commonly 

537 supported by sea-surface temperature estimates using emerging biomarker techniques 

538 outline below. 

539 

540 5.3.1f Biogeochemistry Over the past decade, two new organic proxies for 

541 reconstructing past ocean surface temperature have emerged. Both measurements are 

542 based on quantifying the proportions of biomarkers—molecules produced by restricted 

543 groups of organisms—preserved in sediments. In the case of the “Uk’ 
37 index” (Brassell 

544 et al., 1986 ; Prahl et al., 1988), a few closely related species of coccolithophorid algae 

545 are entirely responsible for producing the 37-carbon ketones (“alkenones”) used in the 

546 paleotemperature index, while crenarcheota (archea) produce the tetra-ether lipids that 

547 make up the TEX86 index (Wuchter et al., 2004). Although the specific function that the 

548 alkenones and glycerol dialkyl tetraethers serve for these organisms is unclear, the 

549 relationship of the biomarker Uk’ 
37 index to temperature has been confirmed 

550 experimentally in the lab (Prahl et al., 1988) and with extensive calibrations of modern 

Chapter 5 Peer Review Copy 25 



        
      

 

      

           

       

         

              

            

             

         

         

         

          

         

        

         

            

          

         

    

        

          

            

         

            

            

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

551 surface sediments to overlying surface ocean temperatures (Muller et al., 1998, Conte et 

552 al., 2006, Wuchter et al., 2004). 

553 Biomarker reconstructions have several advantages for reconstructing sea surface 

554 conditions in the Arctic. First, in contrast to δ18O analyses of marine carbonates (outlined 

555 above), the confounding effects of salinity and ice volume do not compromise the utility 

556 of biomarkers as paleotemperature proxies (a brief discussion of caveats in the use of 

Uk’ 557 37 is given below). Both the Uk’ 
37 and TEX86 proxies can be measured reproducibly to 

558 high precision (analytical errors corresponding to approximately 0.1 °C for Uk’ 
37 and 0.5 

559 °C for TEX86), and sediment extractions and gas/liquid chromatographic detections can 

560 be automated for high sampling rates. The abundances of biomarkers also provide 

561 insights into past ecosystem composition, so that links between the physical 

562 oceanography of the high latitudes and carbon cycling can be assessed. And lastly, 

563 organic biomarkers can often be recovered in Arctic sediments that do not preserve 

564 carbonate or siliceous microfossils. It should be noted, however, that the harsh conditions 

565 of the northern high latitudes mean that the organisms producing the alkenone and 

566 tetraethers may have been excluded at certain times and places; thus, continuous records 

567 cannot be guaranteed. 

568 The principal caveats in using biomarkers for paleotemperature reconstructions 

569 come from ecological and evolutionary considerations. Alkenones are produced by algae 

570 that are restricted to the region with abundant light (the photic zone), so their 

571 paleotemperature estimates apply to this layer, which approximates the sea surface 

572 temperature. In the vast majority of the ocean, the alkenone signal recorded by sediments 

573 closely correlates with mean annual sea surface temperature (Muller et al., 1998; Conte et 
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574 al., 2006; Fig. 5.15). However, in the case of highly seasonal high-latitude oceans, the 

575 temperatures inferred from the alkenone Uk’ 
37 index may better approximate summer 

576 surface temperatures than mean annual sea-surface temperature. Furthermore, past 

577 changes in the season of production could bias long-term time series of past temperatures 

578 based on the Uk’ 
37 proxy. Depending on water column conditions, past production could 

579 have been highly focused toward a short (summer?) or a more diffuse (late Spring-early 

580 Fall?) productive season. A survey of modern surface sediments in the North Atlantic 

581 (Rosell-Mele et al., 1995) shows that the seasonal bias in alkenone unsaturation is not 

582 important except at high (>65°N) latitudes (Rosell-Mele et al., 1995). A possible 

583 additional complication with the Uk’ 
37 proxy is that in the Nordic Seas an additional 

584 alkenone (of the 37:4 type) is common, although it is rare or absent in most of the world 

585 ocean including the Antarctic. The combination of the relatively fresh and cold waters of 

586 the Nordic Seas may be affecting alkenone production by the usual species, or may be 

587 affecting the mixture of species producing. Regardless, this oddity suggests caution in 

588 applying the otherwise robust global calibration of alkenone unsaturation to Nordic-Sea 

589 surface temperature (Rosell-Mele and Comes, 1999). 

590 In contrast to the near-surface restriction of the algae producing the Uk’ 
37 proxy, 

591 the marine crenarcheota that produce the tetraether membrane lipids used in the TEX86 

592 index can range widely through the water column. In situ analyses of particles suspended 

593 in the water column show that the tetraether lipids are most abundant in winter and spring 

594 months in many ocean provinces (Wuchter et al., 2005) and are present in large amounts 

595 below 100 m depth. However, it appears that the chemical basis for the TEX86 proxy is 

596 fixed by processes that occur in the upper lighted (photic) zone, so that the sedimentary 
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597 signal originates near the sea surface (Wuchter et al.,, 2005), just as for the Uk’ 
37 proxy. 

598 No studies have yet been conducted to assess how high latitude seasonality affects the 

599 TEX86 proxy. 

600 As for many other proxies, use of these biomarker proxies involves the 

601 assumption that the modern relationship between organic proxies and temperature was 

602 the same in the past. The two modern (and genetically closely related) species producing 

603 the alkenones in the Uk’ 
37 proxy can be traced back in time in a continuous lineage to the 

604 Eocene (~50 Ma ago), and alkenone occurrences coincide with the fossil remains of the 

605 ancestral lineage in the same sediments (Marlowe et al., 1984). One might suppose that 

606 evolutionary past events in the broad group of algae that includes these species might 

607 have produced or eliminated other species generating these chemicals with a different 

608 relation to temperature; however, this would cause jumps in climate reconstructions at 

609 times of evolutionary events in the group, and no such jumps are observed. The TEX86 

610 proxy can be applied to marine sediments 70 to 100 million years old. The working 

611 assumption is, therefore, that both organic proxies can be applied accurately to sediments 

612 containing the appropriate chemicals. 

613 Because these biomarker proxies depend on changes in relative abundance of 

614 chemicals, it is important that natural processes after death of the producing organisms do 

615 not preferentially break down one chemical, changing the ratio. Fortunately, this appears 

616 to be the case (Prahl et al., 1989; Grice et al., 1998, Teece et al., 1998; Herbert, 2003; 

617 Schouten et al., 2004). An additional complication is that sediments can be moved around 

618 by ocean currents, so that the material sampled at one place was produced in another 

619 place with different climatic conditions (Ohkouchi et al., 2002; Thomsen et al., 1998). 
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620 Ordinarily, transport of biomarkers to a place is small compared to the supply from the 

621 productive ocean above, so that the proxy records local climate. However, at some times 

622 and places, the Arctic has been comparatively nonproductive, so that transport from other 

623 parts of the ocean, or from land in the case of the TEX86 proxy, may have been important 

624 (Weijers et al., 2006). 

625 

626 5.3.1g Biological Proxies in Lakes Lakes and ponds are common in most 

627 Arctic regions, and provide useful records of climate change (Schindler and Smol, 2006; 

628 Smol and Cumming, 2000; Cohen, 2003; Smol 2008). Many different biological climate 

629 proxies are preserved in Arctic lake and pond sediments (Pienitz et al., 2004). Diatom 

630 shells (Douglas et al., 2004) and remains of non-biting midge flies (chironomid head 

631 capsules; Bennike et al., 2004) are among the most commonly used biological indicators 

632 in Arctic paleoclimatic reconstructions (Fig. 5.16). The overall approach often used by 

633 those who study the history of lakes (paleolimnologists) is first to identify useful species. 

634 Then, the modern conditions are determined that are preferred by these indicator species, 

635 and the conditions beyond which these indicator species cannot survive (typically using 

636 surface sediment calibration sets or training sets, applying statistical approaches such as 

637 Canonical Correspondence Analysis and Weighted Averaging regression and calibration; 

638 see Birks, 1998). The resulting mathematical relations, or transfer functions (like those 

639 used in marine records) are then used to reconstruct the environmental variables of 

640 interest based on the distribution of indicator assemblages preserved in dated sediment 

641 cores (Smol, 2008). Where well-calibrated transfer functions are not available, including 
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642 in some parts of the Arctic, less-precise climate reconstructions are often based on the 

643 known ecological and life-history characteristics of the organisms. 

644 Ideally, sedimentary characteristics would be linked directly to key climatic 

645 variables such as temperature (e.g., Bennike et al., 2004; Larocque and Hall, 2004; 

646 Barley et al., 2006; Pienitz and Smol, 1993; Joynt and Wolfe, 2001; Bigler and Hall, 

647 2003; Weckström et al., 2006; Woller et al. 2004, Finney et al., 2004, and other chapters 

648 in Pienitz et al., 2004). However, the lake sediments typically record conditions in the 

649 lake which are only indirectly related to climate (Douglas and Smol, 1999). For example, 

650 lake ecosystems are strongly influenced by the length of the ice-free versus ice-covered 

651 season, by the sun-blocking effect of any snow cover on ice (Fig. 5.17) (e.g., Smol, 1988; 

652 Douglas et al., 1994; Douglas and Smol, 1999; Sorvari and Korhola, 1998; Sorvari et al., 

653 2002; Rühland et al., 2003; Smol and Douglas, 2007a) and by the existence or absence of 

654 a seasonal layer of warm water near the lake surface that remains separate from colder 

655 waters beneath (Fig. 5.18). Shells and other features in the lake sediment record the 

656 species living in the lake and conditions under which they grew, which rather directly 

657 reflect the ice- and snow-cover and lake stratification, and only indirectly reflect the 

658 atmospheric temperature and precipitation that control the lake conditions. 

659 

660 5.3.1h. Insect proxies. Insects are common, and often are preserved well in 

661 Arctic sediment. Because many insect types live only within narrow ranges of 

662 temperature or other environmental conditions, the presence of particular insects in old 

663 sediments provides useful information on past climate. 
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664 Calibrating the observed insect data to climate involves extensive modern and 

665 recent studies, together with careful statistical analyses. For example, fossil beetles are 

666 often related to temperature using what is known as the Mutual Climatic Range method 

667 (Elias et al., 1999; Bray et al., 2006)). This method quantitatively assesses the relations 

668 between the modern geographical ranges of selected beetle species and modern 

669 meteorological data. A “climate envelope” is determined, within which a species can 

670 thrive. When used with paleodata, the method allows for the reconstruction of a range of 

671 parameters including mean temperatures of the warmest and coldest months of the year. 

672 

673 5.3.1i Sand Dunes When plant roots anchor the soil, sand cannot blow around to 

674 make dunes. In the modern Arctic, and especially in Alaska (Fig. 5.19) and Russia, sand 

675 dunes are forming and migrating in many places where dry, cold conditions restrict 

676 vegetation. During the last glacial interval and at some other times, dunes formed in 

677 places that now lack active dunes, indicating colder or drier conditions (Oswald et al, 

678 1999; Carter, 1981; Beget, 2001; Mann et al., 2002). Some wind-blown mineral grains 

679 are deposited in lakes. The rate at which sand and silt are deposited in lakes increases as 

680 nearby vegetation is removed by cooling or drying, so analysis of the sand and silt in lake 

681 sediments provides additional information on the climate (e.g. Briner et al., 2006) 

682 

683 

684 5.3.2 Proxies for Reconstruction of Precipitation 

685 In the case of sand dunes described above, separating the effects of changing temperature 

686 versus changing precipitation may be difficult, but additional indicators such as insect 
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687 fossils in lake sediments may help by constraining the temperature. In general, 

688 precipitation is more difficult to estimate than is temperature, so reconstructions of 

689 changes in precipitation in the past are less common, and often less quantitative, than are 

690 reconstructions of past temperature changes. 

691 

692 5.3.2a Vegetation-Derived Precipitation Estimates Different plants live in wet 

693 and dry places, so indications of past vegetation provide estimates of past wetness. Plants 

694 do not respond primarily to rainfall, but instead to moisture availability. This is primarily 

695 controlled by the difference between precipitation and evaporation in most places, 

696 although some soils carry water downward so efficiently that dryness occurs even 

697 without much evaporation. 

698 Much modern tundra vegetation occurs where precipitation exceeds evaporation. 

699 Plants such as Sphagnum (bog moss), cotton-grass (Eriophorum) and cloudberry (Rubus 

700 chamaemorus) indicate moist growing conditions. In contrast, grasses dominate dry 

701 tundra and polar semi-desert. Such differences are evident today (Oswald et al., 2003), 

702 and can be reconstructed from pollen and larger plant materials (macrofossils, or 

703 “macros”) in sediments. Regions of Alaska and Siberia with sand dunes that formed in 

704 the last glacial maximum but are not active today often are near regions which had 

705 grasses then but plants requiring greater moisture now (Colinvaux, 1964; Ager and 

706 Brubaker, 1985; Lozhkin et al. 1993; Goetcheus and Birks 2001, Zazula et al., 2003). 

707 In arctic regions, snow cover may allow persistence of shrubs that would be killed 

708 if exposed during the harsh winter. For example, dwarf willow can survive if snow depths 

709 exceed 50 cm (Kaplan et al., 2003). Siberian stone pine requires considerable winter 
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710 snow to weigh down its branches and bury them (Lozhkin et al, 2007). The presence of 

711 these species therefore indicates certain minimum levels of winter precipitation. 

712 Moisture levels can also be estimated quantitatively from pollen assemblages by 

713 means of formal techniques such as inverse and forward modeling, following techniques 

714 also used for estimation of past temperatures. Moisture-related transfer functions have 

715 been developed, in Scandinavia for example (Seppä and Hammarlund, 2000). Kaplan et 

716 al. (2003) compared pollen-derived vegetation with vegetation derived from model 

717 simulations for the present and key times in the past. The pollen data indicated that model 

718 simulations for the Last Glacial Maximum tended to be “too moist”—the simulations 

719 generated shrub-dominated biomes whereas the data indicated drier tundra dominated by 

720 grass. 

721 

722 5.3.2b Lake-level derived precipitation estimates In addition to their other uses 

723 in paleoclimatology as described above, lakes act as natural rain gauges. If precipitation 

724 increases relative to evaporation, lakes tend to rise, so records of past lake levels provide 

725 information on moisture availability. 

726 Most of the water reaching a lake first soaked into the ground and flowed through spaces 

727 as groundwater, before either seeping directly into the lake or else coming back to the 

728 surface in a stream that flowed into the lake. Smaller amounts of water fall directly on 

729 the lake or flow over the land surface to the lake without first soaking in (e.g., 

730 MacDonald et al., 2000a). Lakes lose water in streams (“overflow”), as outflow into 

731 groundwater, and by evaporation. If water supply to a lake increases, the lake level will 

732 rise and the lake will spread. This will increase water loss from the lake, by increasing 
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733 the area for evaporation, by increasing the area through which groundwater is leaving and 

734 the “push” (hydraulic head) causing that outflow, and perhaps by forming a new outgoing 

735 stream or increasing the size of an existing stream. Thus, the level of a lake adjusts in 

736 response to changes in the balance between precipitation and evaporation in the region 

737 feeding water to the lake (the catchment). Because either a rise in precipitation or a drop 

738 in evaporation will cause a rise in lake level, an independent estimate of either 

739 precipitation or evaporation is required to allow estimation of the other from a history of 

740 lake levels (Barber and Finney, 2000). 

741 Former lake levels can be identified by deposits including the fossil shoreline they 

742 leave (Fig. 5.20), and sometimes these are preserved underwater and can be recognized in 

743 sonar surveys or other data, and these deposits can often be dated. Furthermore, the 

744 sediments of the lake may retain a signature of lake-level fluctuations, because coarse-

745 grained material generally occurs near the shore with finer-grained materials offshore 

746 (Digerfeldt, 1988), and these too can be identified, sampled and dated (Abbott et al. 

747 2000). 

748 For a given lake, modern values of the major inputs and outputs can be obtained 

749 empirically, allowing construction of a model that simulates lake-level changes in 

750 response to changing precipitation and evaporation. Allowable pairs of precipitation and 

751 evaporation can then be estimated for any past lake level. Particularly in cases where 

752 precipitation is the primary control of water depth, it is possible to model lake level 

753 responses to past changes in precipitation (e.g., Vassiljev, 1998; Vassiljev et al., 1998). 

754 For two lakes in interior Alaska, this technique suggested that precipitation was as much 
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755 as 50% lower than present at the Last Glacial Maximum (ca. 20ka) (Barber and Finney, 

756 2000). 

757 Biological groups living within lakes also leave fossil assemblages that can be 

758 interpreted in terms of lake level by comparison with modern assemblages. In all cases, 

759 factors other than water depth likely influence the assemblages (MacDonald et al., 

760 2000a), but these may themselves be indirectly related to water depth (e.g., conductivity 

761 and salinity). Aquatic plants, which are represented by pollen and macrofossils, tend to 

762 dominate from nearshore to moderate depths, and shifts in the abundance of pollen or 

763 seeds in one of more sediment profiles can indicate relative water-level changes (Hannon 

764 and Gaillard, 1997; Edwards et al., 2000). Diatom and chironomid (midge) assemblages 

765 may also be related quantitatively to lake depth by means of inverse modeling and 

766 transfer functions used to reconstruct past lake levels (Korhola et al., 2000; Ilyashuk et 

767 al., 2005). 

768 The great variety of lakes, and the corresponding range of sedimentary indicators, 

769 require that field scientists be broadly knowledgeable in selecting which lakes to study 

770 and which techniques to use in reconstructions. For some important case studies, see 

771 Abbott et al., (2000), Edwards et al., (2000), Pienitz et al., (2000), Anderson et al., 

772 (2005), Hannon and Gaillard, 1997; Korhola et al., 2000; and Ilyashuk et al., 2005). 

773 

774 5.3.2c Precipitation estimates from ice cores. Ice cores provide a direct way of 

775 recording the net accumulation rate at sites with permanent ice. The initial thickness of an 

776 annual layer in an ice core (after mathematically squeezing the air out based on the 

777 measured density so that the thickness of ice is considered) is the annual accumulation. 
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778 Most ice cores are drilled in cold regions where little meltwater production and runoff 

779 occur. Furthermore, sublimation/condensation and snow-drift are generally relatively 

780 small terms in the accumulation, so that accumulation is not too different from the 

781 precipitation (e.g., Box et al., 2006). The layer thickness deeper in the core must be 

782 corrected for the thinning that has occurred as the ice-sheet pile spreads and thins under 

783 its own weight, but this correction can be made with much accuracy for most samples 

784 using simple ice flow models (e.g., Alley et al., 1993; Cuffey and Clow, 1997). 

785 The annual-layer thickness can be recorded using any component that varies 

786 regularly with a defined seasonal cycle. Suitable components include visible layering 

787 (e.g. Fig. 5.12a), which responds to changes in snow density or impurities (Alley et al., 

788 1997), the seasonal cycle of water isotopes (Vinther et al., 2006), and seasonal cycles in 

789 different chemical species (e.g. Rasmussen et al., 2006). Using more than one component 

790 gives extra security to the combined output of counted years and layer thicknesses. 

791 Although the correction for strain (layer thinning) increases the uncertainty in 

792 estimating absolute precipitation rate deeper in ice cores, estimates of changes in relative 

793 accumulation rate along an ice core can be considered reliable (e.g., Kapsner et al., 1995). 

794 Because the accumulation rate combines with the temperature to control the rate at which 

795 snow is transformed to ice, and because the isotopic composition of the trapped air 

796 (Sowers et al., 1989) and the number of trapped bubbles in a sample (Spencer et al., 

797 2006), record the results of that transformation, accumulation rates can also be estimated 

798 from measurements of these parameters plus independent estimation of past temperature 

799 using techniques described above. 

800 

Chapter 5 Peer Review Copy 36 



        
      

 

      

        

             

       

            

             

          

               

        

        

  

       

           

                

              

            

              

       

         

             

               

        

         

           

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

801 5.4 Arctic Climate over the past 65 Ma 

802 Over the past 65 Ma (the Cenozoic), the Arctic has experienced a greater change in 

803 temperature, vegetation and ocean surface characteristics than any other Northern 

804 Hemisphere latitudinal band (e.g., Sewall and Sloan, 2001; Bice et al., 2006; and see 

805 results presented below). Those times when the Arctic was unusually warm offer insights 

806 into the feedbacks within the Arctic system that can amplify changes imposed from 

807 outside the Arctic regions. Below we summarize the evidence for Cenozoic history of 

808 climate in the Arctic, focusing especially on warm times, using climate and 

809 environmental proxies outlined in section 5.3. 

810 

811 5.4.1. Early Cenozoic and Pliocene Warm Times 

812 Records of the δ18O composition of bottom-dwelling foraminifera from the global 

813 ocean document a long-term cooling of the deep sea over the past 70 Ma (Fig. 4.8; 

814 Zachos et al., 2001), with the development of large Northern Hemisphere continental ice 

815 sheets 2.6 to 2.9 Ma ago (Duk-Rodkin et al., 2004). As discussed below and in chapter 6, 

816 Arctic climate history is broadly consistent with the global data reported by Zachos et al. 

817 (2001), with general cooling and increase in ice punctuated by short-lived and longer-

818 lived reversals, variations in cooling rate, and additional features related to growth and 

819 shrinkage of ice once ice became well-established. A detailed Arctic Ocean record 

820 equivalent to the global results of Zachos et al., (2001) is not yet available, and because 

821 the Arctic Ocean is geographically somewhat isolated from the world ocean (e.g., 

822 Jakobsson and MacNab, 2006), the possibility exists that some differences would be 

823 found. Emerging paleoclimate reconstructions from the Arctic Ocean derived from 
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824 recently recovered sediment cores from the Lomonosov Ridge (Moran et al., 2006, 

825 Backman et al., 2006) shed new light on the Cenozoic evolution of the Arctic Basin, but 

826 the data have yet to be fully integrated with the evidence from terrestrial records or with 

827 the sketchy records from elsewhere in the Arctic Ocean (see Chapter 8). 

828 Data clearly show warm Arctic conditions during the Cretaceous and early 

829 Cenozoic. For example, late-Cretaceous (70 Ma ago) Arctic Ocean temperatures of 15oC 

830 (compared to near-freezing today) are indicated by TEX86-based estimates (Jenkyns et 

831 al., 2004). The same indicator shows that peak Arctic Ocean temperatures near the North 

832 Pole rose from ~18 oC to more than 23oC during the short-lived Paleocene-Eocene 

833 thermal maximum ~55 Ma ago (Fig. 5.21; Sluijs et al.; 2006; 2008; also see Moran et al., 

834 2006), synchronous with warming on nearby land from pre-event temperature of ~17 oC 

835 to peak temperature during the event of ~25 oC (Weijers et al., 2007). By ~50 Ma ago, 

836 Arctic Ocean temperatures of ~10oC occurred with relatively fresh surface waters 

837 dominated by aquatic ferns (Brinkhuis et al., 2006). Restricted connections to the world 

838 ocean allowed the fern-dominated interval to persist for ~800,000 years; return of more-

839 vigorous interchange was accompanied by a warming in the central Arctic Ocean of ~3oC 

840 (Brinkhuis et al., 2006). On Arctic lands during the Eocene (55 to 34 Ma ago), forests of 

841 Metasequoia dominated a landscape characterized by organic-rich floodplains and 

842 wetlands quite different from the modern tundra (Francis, 1988; McKenna, 1980; 

843 Williams et al. 2003). 

844 Terrestrial evidence shows that warm conditions persisted into the early Miocene 

845 from 23 to 16 Ma ago, when the central Canadian Arctic Islands were covered in mixed 

846 conifer-hardwood forests similar to those of southern Maritime Canada and New England 
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847 today (Whitlock and Dawson, 1990); Metasequoia was still present, although less 

848 abundant than in the Eocene. Still younger, deposits known as the Beaufort Formation 

849 and tentatively dated to ~8 to 3 Ma ago (and thus within Miocene to Pliocene times) 

850 record an extensive riverside forest of pine, birch and spruce, which lived across the 

851 Canadian Arctic Archipelago before geologic processes formed many of the channels that 

852 now divide the islands. 

853 The transition from relatively warm climates of the earlier Cenozoic to the colder 

854 times of the Quaternary ice age with cyclic growth and shrinkage of extensive land ice, 

855 occurred during the Pliocene (5 to 1.8 Ma ago). This change occurred while continental 

856 configurations remained similar to those of the present, and most Pliocene plant and 

857 animal species were similar to those that remain today. A well-documented warm period 

858 in the middle Pliocene (~3 Ma ago), just before the planet transitioned into the 

859 Quaternary Ice Age, included forests covering large regions near the Arctic Ocean that 

860 are currently polar deserts. The presence of Arctica islandica, a marine bivalve that does 

861 not live where there is seasonal sea ice, in marine deposits as young as 3.2 Ma on 

862 Meighen Island at 80 °N, likely records the peak of Pliocene warmth of the ocean (Fyles 

863 et al. 1991). Widespread indications are available of warmer conditions then than 

864 recently (Dowsett et al., 1994), including one site on Ellesmere Island where application 

865 of a novel technique for paleoclimatic reconstruction based on ring-width and isotopic 

866 measurements of wood suggests mean-annual temperatures 14 °C warmer than recently 

867 (Ballantyne et al., 2006). Additional data from records of beetles and plants indicate 

868 mid-Pliocene conditions as much as 10°C warmer than recently for mean summer 
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869 conditions, with even larger wintertime changes to a maximum of 15°C or more (Elias 

870 and Matthews, 2002). 

871 Much attention has been focused on learning the cause(s) for the slow, bumpy 

872 slide in temperatures from the Cretaceous hothouse to the recent ice age. As discussed 

873 below, changes in greenhouse-gas concentrations appear to have played the dominant 

874 role, with contributions from changes in continental positions, in sea level, and in oceanic 

875 circulation linked to these. 

876 Based on climate modeling, Barron et al. (1993) found that continental position 

877 had little effect on temperature difference between Cretaceous and modern temperatures 

878 (also see Poulsen et al., 1999 and references therein). Donnadieu et al. (2006), also using 

879 climate modeling, found that continental motions and their effects on atmospheric and 

880 oceanic circulation caused a change in global average temperature of almost 4oC between 

881 early and late Cretaceous; this is not a direct comparison to modern, but is suggestive that 

882 continental motions can have a notable effect on climate. However, there are as yet no 

883 indications from modeling, despite much effort, that the motion of continents by itself 

884 can explain most or all of the long-term cooling trend from the Cretaceous to the ice age, 

885 or the “wiggles” during that cooling. 

886 The direct paleoclimatic data provide one interesting perspective on the role of 

887 oceanic circulation in the warmth of the latter Eocene. When the Arctic Ocean was filled 

888 with water ferns living in “brackish” water (less salty than normal marine water) in an 

889 ocean that was ice-free or nearly so, the oceanic currents reaching the near-surface Arctic 

890 Ocean must have been greatly weakened relative to today to allow the fresh water to 

891 persist. Thus, the Arctic-Ocean warmth of that time cannot be explained by heat 
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892 transport by oceanic currents. The resumption of stronger currents and normal salinity 

893 was accompanied by a warming of ~3 oC (Brinkhuis et al., 2006), important but not 

894 dominant in the temperature difference between then and now. 

895 As discussed in section 4.2.4, the atmospheric CO2concentration has changed 

896 over tens of millions of years in response to many processes, and especially to those 

897 processes linked to plate tectonics (continental drift) and perhaps also to biological 

898 evolution. Many lines of proxy evidence (see Royer, 2006) show that the warm 

899 Cretaceous had higher atmospheric CO2 than recently, and that the subsequent fall in CO2 

900 occurred in parallel with the cooling (Fig. 5.22). Furthermore, models find that the 

901 changing CO2 concentration is sufficient to explain much of the cooling (e.g., Bice et al., 

902 2006; Donnadieu et al., 2006). 

903 A persistent difficulty is that models driven by reconstructed CO2 tend to 

904 underestimate Arctic warmth (e.g., Sloan and Barron, 1992). Many possible explanations 

905 have been offered for this, including underestimation of CO2 levels (Shellito et al., 2003; 

906 Bice et al., 2006), an enhanced greenhouse effect from polar stratospheric clouds during 

907 warm times (Sloan and Pollard, 1998; Kirk-Davidoff et al., 2002), changed planetary 

908 obliquity (Sewall and Sloan, 2004), reduced biological productivity providing fewer 

909 cloud-condensation nuclei and thus fewer reflective clouds (Kump and Pollard, 2008), 

910 and enhanced heat transport by tropical cyclones (Korty et al., 2008). Several of these 

911 involve feedbacks not normally represented in climate models and serving to amplify 

912 warming in the Arctic; consideration of the literature cited above and of additional 

913 materials points to some combination of stronger greenhouse-gas forcing (see Alley, 
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914 2003 for a review) and stronger long-term feedbacks than typically included in models, 

915 rather than to major orbital change, although that cannot be excluded. 

916 An important role for greenhouse gases in providing the primary control on Arctic 

917 temperature changes is indicated by the warmth of the Paleocene-Eocene Thermal 

918 Maximum. As described above (see Sluijs et al., 2008 for an extensively referenced 

919 summary of the event together with new data pertaining to the Arctic), this thermal 

920 maximum involved a rapid (over a few centuries or less), widespread warming coincident 

921 with a large increase in atmospheric greenhouse-gas concentrations from a biological 

922 source (whether from sea-floor methane, living biomass, soils, or other sources remains 

923 debated), followed by a slower decay of the anomalous warmth and removal of the extra 

924 greenhouse gases over tens of thousands of years to roughly 100,000 years. The event in 

925 the Arctic seems to have occurred within a longer interval of restricted oceanic 

926 circulation into the Arctic Ocean (Sluijs et al., 2008), and was too fast for any notable 

927 effect of drifting continents or evolving life. The reconstructed CO2 change thus is 

928 strongly implicated in the warming (e.g., Zachos et al., 2008). 

929 Taken very broadly, the Arctic changes parallel the global ones over the 

930 Cenozoic, except with larger changes in the Arctic than globally averaged (e.g., Sluijs et 

931 al., 2008). The global changes parallel changing atmospheric carbon-dioxide 

932 concentrations, with changing CO2 the likely cause of most of the temperature change 

933 (e.g., Royer, 2006; Royer et al., 2007). 

934 The well-documented warmth of the Pliocene is not fully explained. This interval 

935 is recent enough that continental positions were substantially the same as today. As 

936 reviewed by Jansen et al. (2007), many reconstructions show notable Arctic warmth but 
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937 little low-latitude change; however, recent work suggests the possibility of low-latitude 

938 warmth as well (Haywood et al., 2005). Reconstructions of Pliocene atmospheric CO2 

939 concentration (reviewed by Royer, 2006) generally agree with each other within the 

940 considerable uncertainties, but allow values above, similar to, or even below the typical 

941 levels just prior to major human influence. Data remain equivocal on whether oceanic 

942 heat transports were enhanced during Pliocene warmth (reviewed by Jansen et al., 2007). 

943 The high-latitude warmth thus may have originated primarily from changes in 

944 greenhouse-gas concentrations in the atmosphere, or from changes in oceanic or 

945 atmospheric circulation, or some combination, perhaps with a slight possibility that other 

946 processes also contributed. 

947 

948 5.4.2. The Early Quaternary: Ice-Age Warm Times 

949 A major reorganization of the climate system occurred between 3. 0 and 2.5 Ma 

950 ago, resulting in the development of the first continental ice sheets over the North 

951 American and Eurasian Arctic, marking the onset of the Quaternary Ice Ages (Raymo, 

952 1994). For the first 1.5 – 2.0 Ma, ice age cycles occurred on a 41 ka rhythm, with the 

953 climate oscilating between glacial and interglacial states (Fig. 5.23). A prominent but 

954 apparently short-lived interglacial (warm interval) occurred ~2.4 Ma ago. This is 

955 recorded especially in the Kap København Formation, a 100-m-thick sequence of 

956 estuarine sediments covering an extensive lowland area near the northern tip of 

957 Greenland (Funder et al., 2001). 

958 The rich and well-preserved fossil fauna and flora in the Kap København 

959 Formation (Fig. 5.24) record warming from cold conditions into an interglacial and 
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960 subsequent cooling, over 10,000 to 20,000 years. During the peak warmth, forest trees 

961 reached the Arctic Ocean coast, 1,000 km north of the northernmost trees today. Based 

962 on this warmth, Funder et al. (2001) suggested that the Greenland Ice Sheet must have 

963 been reduced to local ice caps over mountain areas (Fig. 5.24a) (see Chapter 7). 

964 Although high-time-resolution records are not available across the Arctic Ocean at that 

965 time, by analogy with present faunas along the Russian coast, the coastal zone would 

966 have been ice-free for 2 to 3 months in summer. Today this coast of Greenland 

967 experiences year-round sea ice, and models for diminishing sea ice in a warming world 

968 generally indicate long-term persistence of summertime sea ice off these shores (e.g., 

969 Holland et al., 2006). Thus, the reduced sea ice off northern Greenland during deposition 

970 of the Kap København Formation suggests a widespread warm time with reduced Arctic 

971 sea ice. 

972 During Kap København times, precipitation was higher and temperatures were 

973 warmer than at the peak of the current interglacial about 7 ka ago, with the temperature 

974 difference larger during winter than during summer. Higher temperatures during 

975 deposition of the Kap København were not caused by notably greater solar insolation, 

976 owing to the relative repeatability of the Milankovitch variations over millions of years 

977 (e.g., Berger et al., 1992). As discussed above, uncertainties in estimation of atmospheric 

978 carbon-dioxide concentration, ocean heat transport, and perhaps other factors are 

979 sufficiently large for the time of the Kap København Formation to preclude strong 

980 conclusions about the cause(s) of the unusual warmth. 

981 Potentially correlative records of warm interglacial conditions are found in 

982 deposits on coastal plains along the northern and western shores of Alaska. High sea 
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983 levels during interglaciations repeatedly flooded the Bering Strait, rapidly changing the 

984 configuration of the coastlines, altering regional continentality, and reinvigorating the 

985 exchange of water masses between the North Pacific, Arctic and North Atlantic oceans. 

986 Since the first submergence of the Bering Strait about 5.5 to 5 Ma ago (Marincovich and 

987 Gladenkov, 2001), this marine gateway has allowed relatively warm Pacific water masses 

988 from as far south as northern Japan to reach as far north as the Beaufort Sea (Brigham-

989 Grette and Carter, 1992). The Gubik Formation of Northern Alaska records at least three 

990 warm high sea stands in the early Quaternary (Fig. 5.25). During the Colvillian 

991 transgression, ~2.7 Ma ago, the Alaskan Coastal Plain supported open boreal forest or 

992 spruce-birch woodland with scattered pine and rare fir and hemlock (Nelson and Carter, 

993 1991). Warm marine conditions are confirmed by the general character of the ostracode 

994 fauna, which includes Pterygocythereis vannieuwenhuisei (Brouwers, 1987), an extinct 

995 species of a genus whose modem northern limit is the Norwegian Sea, but in the 

996 northwestern Atlantic Ocean does not occur north of the southern cold-temperate zone 

997 (Brouwers, 1987). Despite the high sea level and relative warmth indicated by the 

998 Colvillian transgression, erratics (rocks not of local origin) in Colvillian deposits 

999 southwest of Barrow, Alaska, indicate that glaciers were terminating in the Arctic Ocean 

1000 and producing icebergs large enough to reach NW Alaska at this time. 

1001 Subsequently, the Bigbendian transgression (~2.5 Ma ago) was also warm, as 

1002 indicated by rich molluscan faunas including the gastropod Littorina squalida and the 

1003 bivalve Clinocardium californiense (Carter et al., 1986). The modern northern limit of 

1004 both of these mollusk species is well to the south (Norton Sound, Alaska). The presence 

1005 of sea otter bones suggests that the limit of seasonal ice on the Beaufort Sea was 
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1006 restricted during the Bigbendian interval to positions north of the Colville River and thus 

1007 well north of typical 20th-century positions (Carter et al., 1986); modern sea otters cannot 

1008 tolerate severe seasonal sea-ice conditions (Schneider and Faro, 1975). 

1009 The youngest of these early-Quaternary events of high sea level is the 

1010 Fishcreekian transgression (~2.1 to ~2.4 Ma ago), suggested to be correlative to the Kap 

1011 Kobenhavn Formation on Greenland (Brigham-Grette and Carter, 1992). However, age 

1012 control is not complete, and Brigham (1985) and Goodfriend et al. (1996) suggested that 

1013 the Fishcreekian could be as young as 1.4 Ma. This deposit contains several mollusk 

1014 species that currently are found only to the south. Moreover, sea otter remains and the 

1015 intertidal gastropod Littorina squalida at Fish Creek suggest that perennial sea ice was 

1016 absent or severely restricted during the Fishcreekian transgression (Carter et al., 1986b). 

1017 Correlative deposits rich in mollusk species currently living only well to the south are 

1018 reported from the coastal plain at Nome, Alaska (Kaufman and Brigham-Grette, 1993). 

1019 The available data clearly indicate episodes of relatively warm conditions 

1020 correlative with high sea levels and reduced sea ice in the early Quaternary. The high sea 

1021 levels suggest melting of land ice (see Chapter 7), so the correlation of warmth and 

1022 reduced land and sea ice (see Chapter 8) indicated by recent instrumental observations, 

1023 model results, and data from other time intervals is also found for this time interval. 

1024 Improved time resolution of histories of forcing and response will be required to assess 

1025 cause(s) of the changes, but the available estimates of forcings indicate that they were 

1026 relatively moderate, and thus that the strong Arctic amplification of climate change was 

1027 active in these early Quaternary events. 

1028 
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1029 5.4.3 The Mid-Pleistocene Transition: 41 ka and 100 ka worlds 

1030 Since the late Pliocene, the cyclical waxing and waning of continental ice sheets 

1031 have dominated global climate variability. The variations in sunshine caused by features 

1032 of Earth’s orbit have been very important in these ice-sheet changes, as described in 

1033 Chapter 4. 

1034 After the onset of glaciation in North America ~2.7 Ma ago (Raymo, 1994), ice 

1035 grew and shrank as the Earth’s obliquity (tilt) varied in its 41 ka cycle. But between 1.2 

1036 and 0.7 Ma ago, the variations in ice volume became larger and slower, with a ~100-ka 

1037 period dominating especially over the last ~700 ka (Fig. 5.23) Although the Earth’s 

1038 eccentricity varies with a ~100-ka period, this does not cause as much change in sunshine 

1039 in the key regions of ice growth as do the faster cycles, so the reasons for the dominant 

1040 ~100-ka period in ice volume remain obscure. Roe and Allen (1999) assessed six 

1041 different models for this behavior, and found that all fit the data rather well, with the 

1042 record still too short to allow the data to demonstrate superiority of any one model. 

1043 Models for the 100-ka variability often assign a major role to the ice sheets 

1044 themselves, and especially to the Laurentide Ice Sheet on North America, which 

1045 dominated the total global change in ice volume (e.g., Marchant and Denton, 1996). For 

1046 example, Marshall and Clark (2002) modeled the growth and shrinkage of the Laurentide 

1047 ice sheet, and found that during growth the ice was frozen to the bed beneath and unable 

1048 to move rapidly. After many tens of thousands of years, trapping of the Earth’s heat led 

1049 to thawing of the bed, allowing faster flow. Faster flow of the ice sheet lowers the upper 

1050 surface, allowing warming and melting (see Chapter 7). Behavior such as this could 

1051 cause the main variations of ice volume to be slower than the main variations in sunshine 
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1052 caused by the Earth’s orbital features, with the slow-flowing ice partially ignoring the 

1053 faster variations in sunshine, until the shift to faster flow allows faster response. Note 

1054 that this remains an hypothesis, and other possibilities also exist. 

1055 The cause of the switch from ~41ka to ~100-ka climate variability, known as the 

1056 mid-Pleistocene transition, also remains obscure. This transition is of particular interest 

1057 because it does not seem to have been caused by any major change in the Earth’s orbital 

1058 behavior, and so the transition may reflect some fundamental threshold within the climate 

1059 system. 

1060 The mid-Pleistocene transition may be related to continuation of the gradual global 

1061 cooling from the Cretaceous, as described above (Raymo et al., 1997; 2006; Ruddiman, 

1062 2003). If, for example, the 100-ka cycling requires that the Laurentide ice sheet grow 

1063 sufficiently large to trap enough of the Earth’s heat to thaw the ice-sheet bed (Marshall 

1064 and Clark, 2002), then the long-term cooling may have reached the threshold at which the 

1065 ice sheet became large enough. 

1066 However, such a cooling model does not explain the key observation (Clark et al., 

1067 2006) that the ice sheets of the last 700 ka have reached larger volume (Clark et al., 2006) 

1068 but smaller area (Boellstorff, 1978; Balco et al., 2005a,b) than the earlier ice sheets. 

1069 Clark and Pollard (1998) used this observation to argue that the early Laurentide Ice 

1070 Sheet must have been substantially lower in elevation than in the late Pleistocene, 

1071 possibly by as much as 1 km. Clark and Pollard (1998) suggested that the tens of 

1072 millions of warm years back to the Cretaceous and beyond had produced thick soils and 

1073 broken-up rocks below the soil. When glaciations began, the ice advanced over these 

1074 water-saturated soils, which deformed easily. Just as grease on a griddle allows batter 
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1075 poured on top to spread easily into a wide, thin pancake, deformation of the soils beneath 

1076 the growing ice (Alley, 1991) would have produced an extensive ice sheet that did not 

1077 contain a large volume of ice. As successive ice ages swept the loose materials to the 

1078 edges of the ice sheet, with rivers removing most of the materials to the sea, hard bedrock 

1079 was exposed in the central region. And, just as the bumps and friction of an ungreased 

1080 waffle iron slow spreading of the batter to give a thicker, not-as-wide breakfast than on a 

1081 greased griddle, the hard, bumpy bedrock produced an ice sheet that did not spread as far 

1082 but contained more ice. 

1083 Other hypotheses also exist for these changes. A complete explanation of the 

1084 onset of extensive glaciation on North America and Eurasia as well as Greenland about 

1085 2.8 Ma ago, or of the transition from 41 ka to 100 ka ice age cycles, remains the object of 

1086 ongoing investigations. 

1087 

1088 5.4.4 A link between ice volume, atmospheric temperature and greenhouse 

1089 gases 

1090 The average global-average temperature change across one of the large 100-ka 

1091 ice-age cycles was about 5-6oC (Jansen et al., 2007), with larger changes in the Arctic 

1092 and close to the ice sheets, including changes of 21-23oC atop the Greenland ice sheet 

1093 (Cuffey et al., 1995). The total change in sunshine reaching the planet over these cycles 

1094 was near zero, with the orbital features serving primarily to move sunshine from north to 

1095 south and back, or from equator to poles and back, depending on the cycle considered 

1096 (see Chapter 4). 
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1097 As discussed by Jansen et al. (2007), and in section 5.2.6, above, many factors 

1098 probably contributed to the large temperature change despite very small global change in 

1099 total sunshine. Cooling produced growth of reflective ice that lowered the amount of 

1100 sunshine absorbed by the planet. Complex changes especially in the ocean lowered 

1101 atmospheric carbon dioxide, and both oceanic and terrestrial changes lowered 

1102 atmospheric methane and nitrous oxide, all greenhouse gases, with the changes in carbon 

1103 dioxide most important. Various changes produced additional dust that blocked sunshine 

1104 from reaching the planet. Cooling caused expansion of more-reflective grasslands or 

1105 tundra into regions formerly forested, also reflecting more sunshine. While the orbital 

1106 features drove the ice-age cycling, these feedbacks are required to provide quantitatively 

1107 accurate explanations of the changes. 

1108 The relation between climate and carbon dioxide has been relatively constant back 

1109 at least 650,000 years (Siegenthaler et al., 2005), with the growth and shrinkage of ice, 

1110 cooling and warming of the globe, and other changes repeating along similar although not 

1111 identical paths. However, some of the small differences between successive cycles are of 

1112 interest, as discussed next. 

1113 

1114 5.4.5 Marine Isotopic Stage 11 – a long interglaciation 

1115 Following the mid-Pleistocene Transition, the growth and decay of ice sheets followed a 

1116 100 ka cycle, with brief, warm interglaciations of about 10 ka duration, then 

1117 progressively more extensive ice coverage, terminated rapidly by the transition into the 

1118 next warm interglaciation (e.g., Kellogg, 1977; Ruddiman et al., 1986; Jansen et al., 

1119 1988; Bauch and Erlenkeuser, 2003; Henrich and Baumann, 1994). As discussed above, 
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1120 this 100 ka cycle may be linked to the 100 ka variation of the eccentricity, or out-of-

1121 roundness, of the Earth’s orbit about the sun, although other explanations are possible. 

1122 The eccentricity exhibits an additional cycle of just over 400,000 years, such that 

1123 the orbit goes from almost round to more eccentric to almost round over 100,000 years, 

1124 but the maximum eccentricity reached in this 100,000-year cycle increases and decreases 

1125 with a 400,000-year cycle (Berger and Loutre, 1991; Loutre, 2003). When the orbit is 

1126 almost round, there is little effect from Earth’s precession, which determines whether the 

1127 Earth is closer to the sun or farther from the sun during a particular season such as 

1128 northern summer. About 400,000 years ago, during MIS 11, the 400,000-year cycle 

1129 caused persistence of a nearly round orbit. The interglacial of MIS 11 lasted longer then 

1130 previous or subsequent interglacials (see Droxler et al., 2003 and references therein; 

1131 Kandiano and Bauch, 2007; Jouzel et al., 2007), perhaps because the summer sunshine at 

1132 high northern latitudes did not become low enough at the end of the first 10,000 years of 

1133 the interglacial to allow ice growth at high northern latitudes, because the persistently 

1134 nearly round orbit prevented northern summer from occurring at a great distance from the 

1135 sun (Fig. 5.26). 

1136 As discussed in chapter 7, indications of Arctic and subarctic temperatures at this 

1137 time versus more-recent interglacials are inconsistent (also see Stanton-Frazee et al., 

1138 1999; Bauch et al., 2000; Droxler and Farrell, 2000; Helmke and Bauch, 2003). Sea level 

1139 seems to have been higher at this time than at any time since, and data from Greenland 

1140 are consistent with notable shrinkage or loss of the ice sheet accompanying notable 

1141 warmth, although the age of this shrinkage is not constrained well enough to be sure that 

1142 the warm time recorded was indeed MIS 11 (chapter 7). 
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1143 

1144 5.4.6 Marine Isotopic Stage (MIS) 5e: The Last Interglaciation 

1145 The warmest millennia of at least the past 250,000 years occurred during MIS 5, 

1146 and especially during the warmest part of that interglaciation, MIS 5e (e.g., McManus et 

1147 al., 1994; Fronval and Jansen, 1997; Bauch et al., 1999; Kukla, 2000), when global ice 

1148 volumes were smaller than today and Earth’s orbital parameters aligned to produce a 

1149 strong positive anomaly in solar radiation during summer throughout the Northern 

1150 Hemisphere (Berger and Loutre, 1991). The average solar radiation during the key 

1151 summer months (May, June, July) was ~11% above present across the Northern 

1152 Hemisphere between 130 and 127 ka ago, with a slightly greater anomaly, 13%, over the 

1153 Arctic. Greater solar energy in summer, melting of the large northern hemisphere ice 

1154 sheets, and intensification of the North Atlantic Drift (Chapman et al., 2000; Bauch and 

1155 Kandiano, 2007), combined to reduce Arctic Ocean sea ice, allow expansion of boreal 

1156 forest to the Arctic Ocean shore across large regions, reduce permafrost, and melt almost 

1157 all glaciers in the Northern Hemisphere (CAPE Project Members, 2006). 

1158 High solar radiation in summer during MIS 5e, amplified by key boundary 

1159 condition feedbacks (especially sea ice, seasonal snow cover, and atmospheric water 

1160 vapor; see above), collectively produced summer temperature anomalies 4 to 5 °C above 

1161 present over most Arctic lands, significantly above the average Northern Hemisphere 

1162 summer temperature anomaly (0–2 °C above present; CLIMAP Project Members, 1984; 

1163 Bauch and Erlenkeuser, 2003). MIS 5e demonstrates the strength of positive feedbacks 

1164 on Arctic warming (CAPE Project Members, 2006; Otto Bleisner et al 2006). 

1165 
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1166 5.4.6a Terrestrial MIS 5e records At high northern latitudes, summer 

1167 temperatures exert the dominant control on glacier mass balance, unless accompanied by 

1168 dramatic precipitation changes (e.g., Oerlemans, 2001; Denton et al., 2005; Koerner, 

1169 2005). Summer temperature is also the most effective predictor for most biological 

1170 processes, although seasonality and moisture availability may influence some biological 

1171 such as dominance by evergreen versus deciduous vegetation (Kaplan et al., 2003). For 

1172 these reasons, most studies of conditions during MIS 5e have focused on reconstructing 

1173 summer temperatures. Terrestrial MIS 5e climate especially has been reconstructed from 

1174 diagnostic assemblages of biotic proxies preserved in lake, peat, river, and shallow 

1175 marine archives, and from isotopic changes preserved in ice cores and lake carbonates. 

1176 Estimated winter temperatures as well as summer temperatures, and hence seasonality, 

1177 are well constrained for Europe, but poorly known for most sectors; likewise, 

1178 precipitation reconstructions are limited to qualitative estimates in most cases where 

1179 available, and are not available for most regions. 

1180 All sectors of the Arctic had summers warmer than present during MIS 5e, but the 

1181 magnitude of warming exhibited spatial variability (Fig. 5.27; CAPE Last Interglacial 

1182 Project Members, 2006). The greatest positive summer temperature anomalies occurred 

1183 around the Atlantic sector, where summer warming was typically 4 to 6 °C. This 

1184 anomaly extended into Siberia, but decreased from Siberia westward to the European 

1185 sector (0 to 2 °C), and eastward toward Beringia (2 to 4 °C). The Arctic coast of Alaska 

1186 had sea-surface temperatures 3 °C above recent values, and considerably less summer sea 

1187 ice than recently, but much of interior Alaska had smaller anomalies (0 to 2 °C) that 

1188 probably extended into western Canada. In contrast, northeastern Canada and parts of 
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1189 Greenland had summer temperature anomalies of ~5 °C, and perhaps more (see chapter 7 

1190 for a discussion of Greenland). 

1191 Precipitation and winter temperatures are more difficult to reconstruct for MIS 5e 

1192 than are summer temperatures. In northeastern Europe, the latter part of MIS 5e was 

1193 characterized by a marked increase in winter temperatures. A large positive winter 

1194 temperature anomaly also occurred in Russia and western Siberia, although the timing is 

1195 not as well constrained (Troitsky, 1964; Gudina et al., 1983; Funder et al., 2002). Most 

1196 other sectors that have qualitative precipitation estimates indicate wetter conditions than 

1197 in the Holocene. 

1198 

1199 5.4.6b Marine MIS 5e records Low sedimentation rates and the rare 

1200 preservation of carbonate fossils limit the number of sites at which MIS 5e can be 

1201 reliably identified in sediment cores from the central Arctic Ocean. MIS 5e sediments 

1202 from the central Arctic Ocean usually contain high concentrations of planktonic (surface-

1203 dwelling) foraminifera and coccoliths, indicative of a reduction in summer sea-ice 

1204 coverage that permitted enhanced biological productivity (Gard, 1993; Spielhagen et al., 

1205 1997; 2004; Jakobsson et al. 2000; Backman et al., 2004; Polyak et al., 2004; Nørgaard-

1206 Pedersen et al., 2007a,b). However, occasional dissolution of carbonate fossils 

1207 complicates the interpretation of microfossil concentrations. Also, marine sediments 

1208 from MIS 5a, slightly younger and cooler than MIS 5e, sometimes have higher 

1209 microfossil concentrations than do MIS 5e sediments (Gard, 1986; 1987). 

1210 Arctic Ocean sediment cores recently recovered from the Lomonosov Ridge, north 

1211 of Greenland, have revived the discussion of MIS 5e conditions in the Arctic Ocean. 
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1212 Unusually high concentrations of a subpolar foraminifera species that usually dwells in 

1213 waters with temperatures well above the freezing point were found in MIS 5e levels and 

1214 interpreted to indicate warm interglacial conditions and much reduced sea-ice cover in 

1215 the interior Arctic Ocean (Nørgaard-Pedersen et al., 2007a,b). Interpretation of these and 

1216 other microfossils is complicated by the strong vertical stratification in the Arctic Ocean; 

1217 today, the warm Atlantic water (temperatures >1°C) is in most areas isolated from the 

1218 atmosphere by a relatively thin layer of cold (<1 °C) fresher water that limits the transfer 

1219 of heat to the atmosphere. It is not always possible to determine whether warm-water 

1220 foraminifera found in marine sediment from the Arctic Ocean lived in warm waters that 

1221 remained isolated from the atmosphere below the cold surface layer, or whether the warm 

1222 Atlantic water had displaced the cold surface layer and was interacting with the 

1223 atmosphere to affect its energy balance. 

1224 Landforms and fossils from the western Arctic and Bering Strait indicate vastly 

1225 reduced sea ice during MIS 5 (Fig. 5.28). The winter sea-ice limit is estimated to have 

1226 been as much as 800 km farther north than its average 20th-century position, and summer 

1227 sea ice may have been absent at times (Brigham-Grette and Hopkins, 1995). These 

1228 reconstructions are consistent with the northward migration of treeline across much of 

1229 Alaska and nearby Chukotka by hundreds of kilometers, with the elimination of tundra 

1230 across Chukotka to the Arctic Ocean coast (Lozhkin and Anderson, 1995). 

1231 Sufficient data are not yet available to allow unambiguous reconstruction of MIS 5e 

1232 conditions in the central Arctic Ocean. Key uncertainties are related to the extent and 

1233 duration of Arctic Ocean sea ice. The vertical structure of the upper 500 m of the water 

1234 column is also climatically important but poorly known, in particular whether the strong 
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1235 vertical stratification characteristic of the modern regime persisted throughout MIS 5e, or 

1236 whether reduced sea ice and changes in the hydrologic cycle and winds broke down this 

1237 stratification and allowed Atlantic water to reside at the surface over larger portions of 

1238 the Arctic Ocean. 

1239 

1240 5.4.7 MIS 3 warm intervals 

1241 The temperature and precipitation history of MIS 3 (~70 ka to 30 ka ago) is 

1242 difficult to reconstruct because of the paucity of continuous records and the difficulty in 

1243 providing a secure time frame. The δ18O record of temperature change over the 

1244 Greenland ice sheet and other ice-core data show that the North Atlantic region 

1245 experienced repeated episodes of rapid, high-magnitude climate change, with rapid 

1246 increases in temperature of up to 15oC (reviewed by Alley, 2007 and references therein), 

1247 with each warm period lasting several hundred to a few thousand years. These brief 

1248 climate excursions not only found in the Greenland Ice Sheet, but are also recorded in 

1249 cave sediments from China (Wang et al., 2001; Dykoski, et al.., 2005) and high-

1250 resolution marine records off California (Behl and Kennett, et al., 1996), the Caribbean 

1251 Sea’s Cariaco Basin (Hughen et al., 1996.), the Arabian Sea (Schultz et al., 1998) and the 

1252 Sea of Okhotsk (Nürnberg and Tiedmann, 2004), among many other sites. The ice-core 

1253 records from Greenland include indications of climate change in many regions on the 

1254 same time scale (for example, the methane trapped in ice-core bubbles was in part 

1255 produced in tropical wetlands and was essentially 100% produced beyond the Greenland 

1256 ice sheet; Severinghaus et al., 1998). These ice-core records demonstrate clearly that the 

1257 climate-change events were synchronous across widespread areas; the ages of events 
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1258 from many regions agreeing within the stated uncertainties, in good agreement. These 

1259 events were thus hemispheric to global in nature (see review by Alley, 2007), and are 

1260 considered a “fingerprint “ of large-scale ocean-atmosphere coupling (Bard, 2002). The 

1261 cause(s) for these events is still debated. However, Broecker and Hemming (2001) and 

1262 Bard (2002) among others suggested they were likely the result of major and abrupt 

1263 reorganizations of the ocean’s thermohaline circulation probably related to ice sheet 

1264 instabilities that introduced large quantities of fresh water into the North Atlantic (Alley, 

1265 2007). Such large and abrupt oscillations linked to changes in North Atlantic surface 

1266 conditions and probably to the large-scale oceanic circulation persisted into the Holocene 

1267 (MIS 1), with the youngest having occurred about 8.2 ka ago (Alley and Ágústdóttir, 

1268 2005). However, it appears that the abrupt cooling at that time reflects an ice-age-linked 

1269 cause, a catastrophic flood from a very large lake dammed by the melting Laurentide ice 

1270 sheet. 

1271 Within MIS 3, land ice was somewhat reduced compared to the colder times of 

1272 MIS 2 and MIS 4, but Arctic temperatures generally were much lower and ice more 

1273 extensive than in MIS 1, with certain exceptions. Sea level was lower at that time, the 

1274 coastline well offshore in many places, and the increased continentality (isolation from 

1275 the moderating influence of the sea) may have contributed to warmer summertime 

1276 temperatures, presumably offset by colder wintertime temperatures. 

1277 For example, on the New Siberian Islands in the East Siberian Sea, Andreev et al 

1278 (2001) documented the existence of graminoid-rich tundra thought to have covered wide 

1279 areas of the emergent shelf, with summer temperatures perhaps as much as 2oC warmer 

1280 than during the 20th century. At Elikchan 4 Lake in the upper Kolyma drainage, the 
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1281 sediment record contains at least three intervals (especially one ~38 ka ago) when 

1282 summer temperatures and treeline reached late Holocene conditions (Anderson and 

1283 Lozhkin, 2001). Insect faunas nearby in the lower Kolyma are thought to have reached 

1284 1-4.5oC warmer than recently for similar intervals (Alfimov et al., 2003). In general, 

1285 variable paleoenvironmental conditions were typical of the traditional Karaginskii/MIS 3 

1286 period across arctic Russia; however, stratigraphic confusion within the limits of 

1287 radiocarbon-dating precludes widespread correlation of events . 

1288 Relative warmth during MIS 3 appears to have been strongest in Eastern Beringia 

1289 with some evidence of temperatures between 45 and 33 ka only 1 to 2 °C lower than 

1290 present (Elias, 2007). The warmest interval across interior Alaska is known as the Fox 

1291 Thermal Event, dated ~40-35 ka ago, marked by the establishment of spruce forest tundra 

1292 (Anderson and Lozhkin, 2001). Yet forests were most dense a little earlier across the 

1293 Yukon, ~43-39 ka ago. In general (Anderson and Lozhkin, 2001), the warmest 

1294 interstadial interval for all of Beringia possibly occurred between 44-35 ka ago, with 

1295 strong signals from interior sites and little to no vegetation response in areas closest to 

1296 Bering Strait. Climatic conditions in eastern Beringia appear to have been harsher than 

1297 modern for all of MIS 3. In contrast, MIS 3 climates of western Beringia achieved 

1298 modern or near modern levels during several intervals. Moreover, while the transition 

1299 from MIS 3 to MIS 2 was clearly marked by a transition from warm/moist to cold/dry 

1300 conditions across western Beringia, this transition is absent or subtle in all but a few 

1301 records from Alaska (Anderson and Lozhkin, 2001). 

1302 

1303 5.4.8 MIS 2, the last glacial maximum (30 to 15 ka ago) 
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1304 The last glacial maximum was particularly cold in both the Arctic and globally, 

1305 and provides useful constraints on the magnitude of Arctic amplification (see below). 

1306 During peak cooling of the last glacial maximum, planetary temperatures were ~5-6 °C 

1307 lower than present (Farrera et al., 1999; Braconnot et al., 2007, Jansen et al., 2007), 

1308 whereas Arctic temperatures in central Greenland were more than 20°C lower (Cuffey et 

1309 al., 1995; Dahl-Jensen et al., 1998), with similar temperature depressions over Beringia 

1310 (Elias et al., 1996a). 

1311 

1312 5.4.9 MIS 1, The Holocene: the present interglaciation 

1313 In the face of rising solar energy in summer tied to orbital features, and rising 

1314 greenhouse gases, Northern Hemisphere ice sheets began to recede from near their largest 

1315 extent shortly after 20 ka ago, and at a noticeable increasing rate of recession after ~16 ka 

1316 ago (see, e.g., Alley et al., 2002 for the timing of various events during the deglaciation). 

1317 Most coastlines became ice-free before 12 ka ago, and ice continued to melt rapidly as 

1318 summer insolation reached a peak (~9% above modern) ~11 ka ago. The MIS 2/MIS 1 

1319 transition, which marks the start of the Holocene interglaciation, is often placed at the 

1320 abrupt termination of the cold event called the Younger Dryas, which recently was 

1321 estimated as ~11.7 ka ago (Rasmussen et al., 2006). 

1322 A wide variety of evidence from terrestrial and marine archives indicates that 

1323 peak Arctic summertime warmth was achieved during the early Holocene, when most 

1324 regions of the Arctic experienced sustained temperatures that exceeded observed 20th 

1325 century values. This period of peak warmth, which is geographically variable in its 

1326 timing, is generally referred to as the Holocene Thermal Maximum (HTM). The ultimate 
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1327 driver of the warming was orbital forcing, which produced increased summer solar 

1328 radiation across the Northern Hemisphere. At 70oN, insolation in June now is near a 

1329 local minimum, with a maximum ~11-12 ka ago; June insolation was ~15 W m–2 larger 

1330 than recently about 4 ka ago, and ~45 W at m–2 the Holocene peak, for a total change of 

1331 ~10% (Fig. 5.29; Berger and Loutre, 1991). Winter (January) insolation was only 

1332 slightly lower than today ~11 ka ago, in large part because there is almost zero insolation 

1333 so far north in January. 

1334 By 6 ka ago, sea level and ice volumes were close to those observed more 

1335 recently, and climate forcings such as atmospheric carbon-dioxide concentration differed 

1336 little from pre-industrial conditions (e.g., Jansen et al., 2007), except for the steady 

1337 decrease in far-northern summer insolation that occurred throughout the Holocene. High-

1338 resolution archives (decades to centuries) containing multiple climate proxies are 

1339 available for most of the Holocene across the Arctic. Consequently, the mid- to late-

1340 Holocene allows evaluation of the range of natural climate variability, and the magnitude 

1341 of climate change in response to relatively small forcings. 

1342 

1343 5.4.9.a The Holocene Thermal Maximum (HTM) Many of the Arctic 

1344 paleoenvironmental records for the HTM appear to have recorded primarily summertime 

1345 conditions. Many different proxies have been exploited to derive these reconstructions, 

1346 including: biological indicators such as pollen, diatoms, chironomids, dinoflagellate cysts 

1347 and other microfossils; elemental and isotopic geochemical indexes from lacustrine 

1348 sediments, marine sediments, and ice cores; borehole temperatures; and, age distributions 
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1349 of radiocarbon-dated tree stumps north of/above current treeline, marine mollusks and 

1350 whale bones (Kaufman et al., 2004). 

1351 A recent synthesis of 140 Arctic paleoclimatic and paleoenvironmental records 

1352 extending from Beringia westward to Iceland by Kaufman et al. (2004) provides insights 

1353 into the nature of the HTM in the western Arctic (Fig. 5.30). Fully 85% of the sites 

1354 included in the synthesis contained evidence of a HTM. The average duration of the 

1355 HTM extended from 2100 years in Beringia to 3500 years in Greenland. The period 10 

1356 ka to 4 ka ago includes the greatest number of sites recording HTM conditions and the 

1357 greatest spatial extent of the HTM in the western Arctic (Fig. 5.31b). There is a strong 

1358 geographic gradient in the timing of HTM initiation and termination in the western Arctic 

1359 (Fig. 5.31c). The earliest initiation of the HTM occurred in Beringia, where warmer-

1360 than-present conditions became established 14 to 13 ka ago. Intermediate ages for 

1361 initiation of the HTM (10 ka to 8 ka ago) are apparent in the Canadian Arctic islands and 

1362 extending across central Greenland, although the HTM on Iceland occurred a bit later, 

1363 from 8 to 6 ka ago. The onset of the HTM on Svalbard was earlier, by 10.8 ka ago 

1364 (Svendsen and Mangerud, 1997). The continental portions of central and eastern Canada 

1365 experienced the latest general onset of HTM conditions (7 to 4 ka ago). Similarly, the 

1366 earliest termination of the HTM occurred in Beringia, although most regions reflect 

1367 cooling by 5 ka ago. Much of the pattern of the onset of the HTM can be explained at 

1368 least in part by proximity to the cold winds from the melting Laurentide ice sheet in 

1369 Canada, which depressed temperatures nearby until the ice melted back. 

1370 Records for sea-ice conditions in the Arctic Ocean and adjacent channels have 

1371 been developed by radiocarbon-dating indicators including the remains of open-water 
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1372 proxies such as whales and walrus, warm-water marine mollusks, and changes in 

1373 microfauna preserved in marine sediments. These reconstructions, presented in more 

1374 detail in Chapter 8 (Sea Ice), parallel the terrestrial record for the most part. The data 

1375 demonstrate an increased flux of warm Atlantic water into the Arctic Ocean beginning 

1376 ~11.5 ka ago, but peaking between about 8 and 5 ka ago, which, coupled with increased 

1377 summer insolation, resulted in a decrease in the area of perennial sea-ice cover during the 

1378 early Holocene. Decreased sea-ice cover in the western Arctic during the early Holocene 

1379 also may be indicated by changes in sea-salt sodium concentrations in the Penny Ice Cap 

1380 (Eastern Canadian Arctic; Fisher et al., 1998) and the Greenland Ice Sheet (Mayewski et 

1381 al., 1997). In most regions, perennial sea ice increased in the late Holocene, although it 

1382 has been suggested that the Chukchi Sea experienced decreasing sea ice (de Vernal et al., 

1383 2005), possibly in response to changing rates of Atlantic water inflow in Fram Strait. 

1384 In North America, treeline expanded northward into regions formerly mantled by 

1385 tundra as summer temperatures increased through the early Holocene, although the 

1386 northward extent of treeline advance appears to have been limited to perhaps a few tens 

1387 of kilometers beyond the recent position (Seppä et al., 2003; Gajeswski and MacDonald, 

1388 2004). In contrast, treeline change across the Eurasian Arctic was much greater. Tree 

1389 macrofossils (Kremenetski et al., 1998; MacDonald et al., 2000a,b, 2007) collected at 

1390 and/or beyond the current treeline indicate that tree genera such as a birch (Betula) and 

1391 larch (Larix) advanced to beyond the modern limits of treeline across most of northern 

1392 Eurasia between 11and 10 ka ago (Figs. 5.31 and 5.32). Spruce (Picea) advanced 

1393 slightly later than the other two genera. Interestingly, pine (Pinus), which forms the 

1394 conifer treeline in Fennoscandia and the Kola Peninsula, does not appear to have 
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1395 established appreciable forest cover at or beyond the present treeline in those regions at 

1396 the far west of Europe until around 7 ka ago (MacDonald et al. 2000b). However, 

1397 quantitative reconstructions of temperature from the Kola Peninsula and adjacent 

1398 Fennoscandia suggest that summer temperatures were warmer than modern temperatures 

1399 by 9 ka ago (Seppä and Birks, 2001; 2002; Hammarlund et al., 2002; Solovieva et al., 

1400 2005), and the development of extensive pine cover at and north of the present treeline 

1401 appears to have been delayed relative to this warming. In the Taimyr Peninsula of 

1402 Siberia and across nearby regions, the most northerly limit reached by trees during the 

1403 Holocene was over 200 km north of the current treeline. The treeline appears to have 

1404 begun to retreat across northern Eurasia ~4 ka ago. The timing of the HTM across the 

1405 Eurasian Arctic overlaps the widest expression of the HTM in the western Arctic (Fig. 

1406 5.31), and it differs in that the timing of onset and termination show dramatically less 

1407 variability across Eurasia than across North America, and the magnitude of the treeline 

1408 expansion and retreat is far greater in the Eurasian Arctic. Fossil pollen and other 

1409 indicators of vegetation or temperature from the northern Eurasian margin also support 

1410 the contention of a prolonged warming and northern extension of treeline during the early 

1411 through middle Holocene (see for example Hyvärinen, 1975; Clayden et al., 1997; 

1412 Velichko et al., 1997; Kaakinen and Eronen, 2000; Seppä, 1996: Pisaric et al., 2001; 

1413 Seppä and Birks, 2001, 2002; Gervais et al., 2002; Hammarlund et al., 2002; Solovieva et 

1414 al., 2005). 

1415 Changes in landforms suggest that the early to middle Holocene was associated 

1416 with permafrost degradation in Siberia. A synthesis of available Russian data by 

1417 Astakhov (1995) suggests that melting permafrost was apparent north of the Arctic Circle 
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1418 during the early through middle Holocene. Areas south of the Arctic Circle appear to 

1419 have experienced deep thawing (100 to 200 m depth) from the early Holocene until about 

1420 4 ka to 3 ka ago, when cooler conditions led to renewed permafrost development. The 

1421 deep thawing and subsequent renewal of surface permafrost produced an extensive 

1422 thawed layer sandwiched between the shallow, more recently frozen ground, and deeper 

1423 Pleistocene permafrost across much of northwestern Siberia. 

1424 Quantitative estimates of the HTM summer temperature anomaly along the 

1425 northern margins of Eurasia and adjacent islands typically range from 1 to 3oC. The 

1426 geographic position of northern treeline across Eurasia is largely controlled by summer 

1427 temperature and the length of the growing season (MacDonald et al., 2007), and in some 

1428 areas the magnitude of treeline displacement there suggests a summer warming 

1429 equivalent in impact to 2.5 to 7.0oC (see for example Birks, 1991; Wohlfarth et al., 1995; 

1430 MacDonald et al., 2000b; Seppä and Birks, 2001, 2002; Hammarlund et al., 2002; 

1431 Solovieva et al., 2005). Sea-surface temperature anomalies during the Holocene HTM 

1432 ranged up to 4 to 5o C higher than the late Holocene for the eastern North Atlantic Sector 

1433 and adjacent Arctic Ocean (Salvigsen, 1992; Koç et al., 1993). HTM summer 

1434 temperature anomalies in the western Arctic ranged from 0.5 to 3oC with a mean of 

1435 1.65oC, and with the largest anomalies in the North Atlantic sector (Kerwin et al., 1999; 

1436 Kaufman et al., 2004; Flowers et al., in press). 

1437 

1438 5.4.9.b Neoglaciation A broad array of climate proxies is available to 

1439 characterize the overall pattern of Late Holocene climate change. Following the HTM, 

1440 most proxy summer temperature records from the Arctic indicate an overall cooling trend 
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1441 through the late Holocene. Cooling is first recognized between 6 and 3 ka ago, 

1442 depending on the threshold for change of each particular proxy. Records that exhibit a 

1443 shift by 6 to 5 ka ago typically reflect intensified cooling about 3 ka ago (Fig. 5.32). 

1444 Cooling during the second half of the Holocene led to the expansion of mountain 

1445 glaciers and ice caps around the Arctic. The term “Neoglaciation” is widely applied to 

1446 this episode of glacier growth, and in some cases re-formation, following their maximum 

1447 retreat during the HTM (Porter and Denton, 1967). The former extent of glaciers is 

1448 inferred from dated moraines and proglacial sediments deposited in lakes and marine 

1449 settings. For example, ice-rafted detritus (Andrews et al., 1997) and the glacial geologic 

1450 record (Funder, 1989) indicate that outlet glaciers of the Greenland Ice Sheet advanced 

1451 between 6 and 4 ka (see Chapter 7). Multiproxy records from ten glaciers or glaciated 

1452 areas in Norway show evidence for increased activity by 5 ka ago (Nesje et al., 2001; 

1453 Nesje et al., 2008). Major advances of outlet glaciers of northern Icelandic ice caps begin 

1454 by 5 ka ago (Stötter et al., 1999; Geirsdottir et al., in press). In the European Arctic, 

1455 glaciers expanded on Franz Josef Land (Lubinski et al., 1999) and Svalbard (Svendsen 

1456 and Mangerud, 1997) by 4 ka ago, although sustained growth primarily began around 3 

1457 ka ago. An early Neoglacial advance of mountain glaciers is registered in Alaska, most 

1458 prominently in the Brooks Range, the highest-latitude mountains in the state (Ellis and 

1459 Calkin, 1984; Calkin, 1988). In southwest Alaska, mountain glaciers in the Ahklun 

1460 Mountains did not reform until about 3 ka ago (Levy et al., 2003). Neoglacial advances 

1461 began in Arctic Canada by 5 ka ago (Miller et al., 2005) 

1462 Additional evidence of Neoglacial cooling comes from: a reduction in melt layers 

1463 in the Agassiz Ice Cap (Koerner and Fisher, 1990) and in Greenland (Alley and 
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1464 Anandakrishnan, 1995); the decrease in δ18O values in ice cores including those from the 

1465 Devon Island (Fisher, 1979) and Greenland (Johnsen et al., 1992) together with 

1466 indications of cooling from borehole thermometry (Cuffey et al., 1995); the retreat of 

1467 large marine mammals and warm-water-dependent mollusks from the Canadian Arctic 

1468 (Dyke and Savelle, 2001); the southward migration of the northern tree line across central 

1469 Canada (MacDonald et al., 1993), Eurasia (MacDonald et al., 2000a), and Scandinavia 

1470 (Barnekow and Sandgren, 2001); the expansion of sea-ice cover along the shores of the 

1471 Arctic Ocean on Ellesmere Island (Bradley, 1990), over Baffin Bay (Levac et al., 2001), 

1472 and the Bering Sea (Cockford and Frederick, 2007); and the shift in vegetation 

1473 communities inferred from plant macrofossils and pollen around the Arctic (Bigelow et 

1474 al., 2003). The assemblage of microfossils and the stable isotope ratios of foraminifera 

1475 indicate a shift toward colder, lower-salinity conditions about 5 ka ago along the East 

1476 Greenland Shelf (Jennings et al., 2002) and the western Nordic seas (Koç and Jansen, 

1477 1994), suggesting increased influx of sea ice from the Arctic. Where quantitative 

1478 estimates of temperature change are available, they generally indicate that summer 

1479 temperature decreased by 1-2°C during this initial phase of cooling. 

1480 The general pattern of an early- to middle-Holocene thermal maximum followed 

1481 by Neoglacial cooling forms a multi-millennial trend that, in most places, culminated in 

1482 the 19th century. Superposed on the long-term cooling trend were multiple centennial-

1483 scale warmer and colder intervals, which are expressed to a varying extent and are 

1484 interpreted with various levels of confidence in different proxy records. In northern 

1485 Scandinavia, evidence for notable late Holocene cold intervals prior to the 16th century 
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1486 includes narrow tree-ring widths (Grudd et al., 2002), lowered tree line (Eronen et al., 

1487 2002), and major glacier advances (Karlén, 1988) between 2.6 and 2.0 ka ago. 

1488 

1489 5.4.9.c The Medieval Warm Period (MWP) Probably the most oft-

1490 cited warm interval of the late Holocene is the Medieval Warm Period (MWP). The term 

1491 originated based on multiple lines of evidence from Western Europe, but is often applied 

1492 to other regions to refer to any of the relatively warm intervals of various magnitudes that 

1493 occurred at different times between about 950 and 1200 AD (Lamb, 1977) (Fig. 5.33). In 

1494 the Arctic, evidence for climate variability, including relative warmth, during this interval 

1495 is based on glacier extents, marine sediments, speleothems, ice cores, borehole 

1496 temperatures, tree rings, and archaeology. The most consistent records of an Arctic 

1497 MWP come from the North Atlantic sector of the Arctic. The summit of Greenland 

1498 (Dahl-Jensen et al., 1998), western Greenland (Crowley and Lowery, 2000), Swedish 

1499 Lapland (Grudd et al., 2002), northern Siberia (Naurzbaev et al., 2002), and Arctic 

1500 Canada (Anderson et al., 2008) were all relatively warm around 1000 AD. During 

1501 Medieval time, Inuit populations moved out of Alaska into the Eastern Canadian Arctic, 

1502 hunting whale from skin boats in regions perennially ice-covered through the 20th century 

1503 (McGhee, 2004). 

1504 The evidence for Medieval warmth throughout the rest of the Arctic is less clear. 

1505 However, there are at least some indications of Medieval warmth, including general 

1506 retreat of glaciers in southeastern Alaska (Reyes et al., 2006; Wiles et al., 2008), and 

1507 enhanced growth in some high-latitude tree-ring records from Asia and North America 

1508 (D’Arrigo et al., 2006). However, Hughes and Diaz (1994) argued that the Arctic as a 
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1509 whole was not anomalously warm throughout Medieval time (also see Bradley et al., 

1510 2003a, and National Research Council, 2006). Warmth during the Medieval interval is 

1511 generally ascribed to lack of explosive volcanoes that produce particles to block the sun, 

1512 and perhaps to enhanced brightness of the sun (Crowley, 2000; Goosse et al., 2005; also 

1513 see Jansen et al., 2007); warming around the North Atlantic and adjacent regions may 

1514 have been linked to changes in oceanic circulation as well (Broecker, 2001). 

1515 

1516 5.4.9d Climate of the past millennium and the Little Ice Age Given 

1517 the importance of understanding climate of the most recent past, and the richness of the 

1518 available evidence, an intensive scientific effort has resulted in numerous temperature 

1519 reconstructions for the past millennium (Jones, et al., 1998; Mann et al., 1998; Esper et 

1520 al., 2002; Crowley et al., 2003; Mann and Jones, 2003; Moberg et al., 2005; Briffa et al., 

1521 2001; National Research Council, 2006; Jansen et al., 2007), and especially the last 500 

1522 years (Bradley and Jones, 1992; Overpeck et al., 1997). Most of these reconstructions are 

1523 based on annually resolved proxy records, primarily from tree rings, and are aimed at 

1524 extracting a record of air temperature change over large regions, or entire hemispheres. 

1525 Data from Greenland ice cores and a few annually laminated lake sediment records are 

1526 typically included in these compilations, but few other records of quantitative 

1527 temperature changes spanning the last millennium are available from the Arctic. In 

1528 general, the temperature records exhibit broad similarities showing modest warmth 

1529 during Medieval times, a variable, but cooling climate from about 1250 to 1850 AD, 

1530 followed by warming as shown by both paleoclimate proxies and the instrumental record. 
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1531 Less is known about changes in precipitation, which is spatially and temporally more 

1532 variable than temperature. 

1533 The trend toward colder summers after about 1250 AD coincides with the onset of 

1534 the Little Ice Age (LIA), which persisted until about 1850 AD, although the timing and 

1535 magnitude of specific cold intervals were different in different places. Proxy climate 

1536 records, both glacial and non-glacial, from around the Arctic and for the Northern 

1537 Hemisphere as a whole, show that the coldest sustained interval of the Holocene occurred 

1538 sometime between about 1500 and 1900 AD (Bradley et al., 2003b). Recent evidence 

1539 from the Canadian Arctic indicates that the onset of expanding glaciers and ice sheets 

1540 following recession in Medieval times occurred between 1250 and 1300 AD, with further 

1541 amplification ~1450 AD (Anderson et al., 2008). 

1542 Glacier mass balances across most of the Northern Hemisphere during the 

1543 Holocene are closely correlated with summer temperature (Koerner, 2005), and the 

1544 widespread evidence of glacier readvances across the Arctic during the LIA is consistent 

1545 with estimates from tree rings of summer cooling. The climate history of the LIA has 

1546 been extensively studied in natural and historical archives, and is well documented in 

1547 Europe and North America (Grove, 1988). Historical evidence from the Arctic is 

1548 relatively sparse, but generally agrees with historical records from NW Europe (Grove, 

1549 1988). Icelandic written records indicate that the duration and extent of sea ice in the 

1550 Nordic Seas were high during the LIA (Ogilvie and Jónsson, 2001). 

1551 The average temperature of the Northern Hemisphere during the Little Ice Age was 

1552 less than 1°C lower than the late 20th century (Bradley and Jones, 1992; Hughes and 

1553 Diaz, 1994; Crowley and Lowery, 2000), but regional effects resulted in variable 
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1554 temperature anomalies. Little Ice Age cooling appears to have been stronger in the 

1555 Atlantic sector of the Arctic than in the Pacific (Kaufman et al., 2004), perhaps because 

1556 ocean circulation promoted the development of sea ice in the north Atlantic, which 

1557 further amplified LIA cooling there (Broecker, 2001; Miller et al., 2005). 

1558 The Little Ice Age also shows evidence of multi-decadal climatic variability, 

1559 including widespread warming during the mid through late 18th century (e.g., Cronin et 

1560 al., 2003). Although the initiation of the Little Ice Age and the structure of climate 

1561 fluctuations during the multi-centennial interval vary around the Arctic, most records 

1562 show warming beginning in the late 19th century (Overpeck et al., 1997). The end of the 

1563 Little Ice Age was apparently more uniform both spatially and temporally than its 

1564 initiation (Overpeck et al., 1997). 

1565 The climate change that led to the Little Ice Age is manifested in proxy records 

1566 other than those that reflect temperature. For example, the LIA was associated with a 

1567 shift in transport of dust and other chemicals to the summit of Greenland (O’Brien et al., 

1568 1995), perhaps related to deepening of the Icelandic low-pressure system (Meeker and 

1569 Mayewski, 2002). The negative phase of the North Atlantic Oscillation was amplified 

1570 during the Little Ice Age (Shindell et al., 2001), while in the North Pacific, the Aleutian 

1571 low was significantly weakened during the Little Ice Age (Anderson et al., 2005; Fisher 

1572 et al., 2004). 

1573 The cooling into the Little Ice Age resulted from the orbital changes as described 

1574 above, together with increased explosive volcanism, and probably also decreased solar 

1575 luminosity as recorded by sunspot numbers as far back as 1600 AD (Renssen et al., 2005; 

1576 Ammann et al., 2007; Jansen et al., 2007). 
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1577 

1578 5.4.10 Placing 20th Century warming in the Arctic in a millennial 

1579 perspective 

1580 Much scientific effort has been devoted to learning how 20th-century and 

1581 21st-century warmth compares to earlier times (e.g., National Research Council, 2006; 

1582 Jansen et al., 2007). Owing to the orbital changes affecting midsummer sunshine (a drop 

1583 in June insolation of ~1 W/m2 at 75oN and 2 W/m2 at 90oN over the last 1000 years; 

1584 Berger and Loutre, 1991), additional forcing was needed in the 20th century to give the 

1585 same summertime temperatures as achieved in the Medieval Warm Period. 

1586 Globally or even hemispherically averaged, the National Research Council (2006) 

1587 found that “Presently available proxy evidence indicates that temperatures at many, but 

1588 not all, individual locations were higher during the past 25 years than during any period 

1589 of comparable length since A.D. 900.” (p. 3); greater uncertainties for hemispheric or 

1590 global reconstructions were identified in assessing older comparisons. As reviewed next, 

1591 some similar results are available for the Arctic. 

1592 Thin, cold ice caps in the Eastern Canadian Arctic preserve intact the vegetation 

1593 beneath them that was killed during ice-cap inception. As these ice caps melt, they 

1594 expose this dead vegetation, which can be dated by radiocarbon with a precision of a few 

1595 decades. A recent compilation of over 50 radiocarbon dates on dead vegetation emerging 

1596 beneath thin ice caps on northern Baffin Island shows that some ice caps formed more 

1597 than 1600 years ago and persisted through Medieval times before melting early in the 21st 

1598 century (Anderson et al., 2008). 
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1599 Melt records from ice caps offer another clear record by which 20th Century 

1600 warmth can be placed in a millennial perspective. The most detailed record comes from 

1601 the Agassiz Ice Cap in the Canadian High Arctic, for which the percentage of summer 

1602 melting of each season’s snowfall is reconstructed for the past 10 ka (Fisher and Koerner, 

1603 2003). The percent melt follows the general trend of decreasing summer insolation from 

1604 orbital changes, with some significant brief departures. Of particular note, is the 

1605 significant increase in melt percent over the past century, with the current values above 

1606 any other melt intensity since at least 1700 years ago, and more melting than any 

1607 sustained interval since 4 to 5 ka ago. 

1608 As reviewed by Smol and Douglas (2007b), changes in lake sediments record 

1609 climatic and other changes in the lakes. Extensive changes especially in the post-1850 

1610 interval are most easily interpreted in terms of warming above the Medieval warmth on 

1611 Ellesmere Island and probably in other regions, although other explanations cannot be 

1612 excluded (also see Douglas et al., 1994). D’Arrigo et al. (2006) show tree-ring evidence 

1613 from a few North American and Eurasian records pointing to the Medieval Warm Period 

1614 being cooler than the late 20th century, although the statistical confidence is not 

1615 extraordinarily high. 

1616 Whole-Arctic reconstructions are not yet available to allow confident comparison 

1617 of late-20th-century warmth to Medieval levels, nor has the work been done to correct for 

1618 the orbital influence and thus to allow accurate comparison of the remaining forcings. 

1619 

1620 5.5 Summary 

1621 5.5.1 Major features of Arctic Climate over the past 65 Ma 
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1622 Section 5.4 summarized some of the extensive evidence for changes in Arctic 

1623 temperatures, and to a lesser extent in Arctic precipitation, over the last 65 million years, 

1624 together with some discussion of “attribution”—what is the best scientific understanding 

1625 of the causes of the climate changes. In this subsection, a brief synopsis is provided; for 

1626 citations, the reader is referred to the extensive discussion just above. 

1627 At the start of the Cenozoic, 65 Ma ago, the Arctic was much warmer than 

1628 recently, with forests growing in all land regions, and no perennial sea ice or Greenland 

1629 Ice Sheet. Gradual but bumpy cooling has dominated most of the last 65 million years, 

1630 with falling atmospheric CO2 concentration apparently the most important contributor to 

1631 the cooling, although with possible additional contributions from changing continental 

1632 positions and their effect on atmospheric or oceanic circulation. One especially prominent 

1633 “bump”, the Paleocene-Eocene Thermal Maximum about 55 Ma ago, caused warming of 

1634 >5oC in the Arctic Ocean and ~8oC on land, probably in a few centuries to a millennium 

1635 or so, followed by cooling over ~100 ka; warming from release of much CO2 (possibly 

1636 initially as sea-floor methane that was then oxidized to CO2) is the most-likely 

1637 explanation. A modest warming in the middle Pliocene (~3 Ma ago) resulted in sufficient 

1638 warmth that deciduous trees occurred on Arctic land that supports only High Arctic polar 

1639 desert vegetation at present; whether this was from circulation changes, CO2, or some 

1640 other cause remains unclear. 

1641 The cooling reached the threshold ~2.7 Ma ago for extensive development of 

1642 continental ice sheets over the North American and Eurasian Arctic, marking the onset 

1643 of the Quaternary Ice Age. Initially, the growth and shrinkage of the ice ages were 

1644 directly controlled by changes in northern sunshine caused by features of Earth’s orbit, 
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1645 and with the 41-ka cycling of sunshine tied to the obliquity (tilt) of the North Pole 

1646 especially prominent. More recently, this cycling has continued by a 100 ka cycle has 

1647 become more prominent, perhaps because the ice sheets became large enough that their 

1648 behavior became important. Short, warm interglacials (usually lasting 10,000 years, 

1649 although the one about 440,000 years ago lasted longer) have alternated with longer 

1650 glacials. Recent work suggests that, in the absence of human influence, the current 

1651 interglacial would continue for a few tens of thousands of years before start of a new ice 

1652 age. Although driven by the orbital cycles, the large temperature differences between 

1653 glacials and interglacials, and the globally synchronous response, reflect the effects of 

1654 strong positive feedbacks, including changes in atmospheric CO2 and other greenhouse 

1655 gases, and in the extent of reflective snow and ice. 

1656 Interactions among the various orbital cycles have caused small differences 

1657 between successive interglacials. The interglacial about 130-120 ka ago had more 

1658 summer sunshine in the Arctic than in the current interglacial, with temperatures in 

1659 many places ~4 to 6 °C warmer than recently, leading to reduced ice on Greenland 

1660 (chapter 7), higher sea level, and widespread loss of small glaciers and ice caps. 

1661 The cooling into and warming out of the most recent glacial were punctuated by 

1662 numerous abrupt climate changes, with millennial persistence of conditions between 

1663 jumps requiring years to decades. These events were very large around the North 

1664 Atlantic, with a much smaller effect on temperature elsewhere in the Arctic, and with 

1665 changes extending to equatorial regions and causing see-saw response in the far south 

1666 (i.e., warming when the north cooled). Large changes in extent of sea ice in the North 
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1667 Atlantic were probably responsible, linked to changes in regional to global patterns of 

1668 ocean circulation; freshening of the North Atlantic favored sea-ice formation. 

1669 These abrupt changes also occurred in the current interglacial, the Holocene, but 

1670 ended as the Laurentide Ice Sheet on Canada melted away. Arctic temperatures in the 

1671 Holocene broadly responded to orbital changes, with warmer temperatures during the 

1672 middle Holocene when there was more summer sunshine. Warming generally led to 

1673 northward migration of vegetation and to shrinkage of ice on land and sea. Small 

1674 oscillations in climate during the Holocene, including the so-called Medieval Warm 

1675 Period and the Little Ice Age, were linked to variations in the sun-blocking effect of 

1676 particles from explosive volcanoes, and perhaps to small variations in solar output or in 

1677 ocean circulation or other factors. The warming from the Little Ice Age began for largely 

1678 natural reasons but appears to have been accelerated by human contributions, and 

1679 especially by increasing CO2 (Jansen, 2007). 

1680 

1681 5.5.2. Arctic Amplification 

1682 The scientific understanding of climatic processes shows that the Arctic 

1683 experiences many strong positive feedbacks (Serreze and Francis, 2006; Serreze et al., 

1684 2007a). As outlined in section 5.2, these especially involve the interactions of snow and 

1685 ice with sunlight, the ocean, and the land surface including vegetation. For example, 

1686 higher temperature tends to remove reflective ice and snow, allowing absorption of more 

1687 sunshine to cause further warming (ice-albedo feedback). Also, higher temperature tends 

1688 to remove sea ice that insulates the cold wintertime air from the warmer ocean beneath, 

1689 further warming the air (ice-insulation feedback). Furthermore, higher temperature tends 
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1690 to allow dark shrubs to replace low-growing tundra that is easily covered by snow, 

1691 enhancing the ice-albedo feedback. Similarly strong negative feedbacks are not known to 

1692 stabilize Arctic climate, so physical understanding indicates that climate changes should 

1693 be amplified in the Arctic compared to lower-latitude sites. This expectation is 

1694 confirmed by the available data, as shown in Figure 5.34. 

1695 In considering Arctic amplification, account must be taken of the forcing. For the 

1696 three younger time intervals shown in the figure, the Holocene Thermal Maximum 

1697 (HTM, ~ 6 ka ago), the Last Glacial Maximum (LGM, ~20 ka ago) and marine isotope 

1698 stage 5e, also known as the last interglacial (LIG, ~130-125 ka ago), the climate changes 

1699 were primarily forced by the Milankovitch features of Earth’s orbit. The anomalies of 

1700 incoming solar radiation (insolation) averaged over the whole planet and a year are very 

1701 small for all times considered, with the orbital changes serving primarily to shift sunlight 

1702 around on the planet. However, during these intervals the insolation forcing was 

1703 relatively uniform across the Northern Hemisphere, with insolation anomalies north of 60 

1704 °N typically only 10 to 20% greater than the anomalies for corresponding times averaged 

1705 over the Northern Hemisphere. For example, at the peak of the LIG (130-125 ka), the 

1706 Arctic (60-90 °N) summer (May-June-July) insolation anomaly was 12.7% above 

1707 present, while the NH anomaly was 11.4% above present (Berger and Loutre, 1991). 

1708 To assess the geographic distribution of climate response, we compare Arctic and 

1709 Northern Hemisphere summer temperature anomalies for the three younger time periods 

1710 because of the similar forcing for the Arctic and Northern Hemisphere. During the 

1711 Pliocene (and during earlier warm times discussed below but not plotted in the figure), 

1712 warmth persisted much longer than the cycling time of insolation changes resulting from 
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1713 Earth’s orbital irregularities (~20 and ~40 ka). Consequently, we compare global 

1714 temperature anomalies with Arctic anomalies. 

1715 A difficulty is that for some of those younger times, global and Arctic estimates 

1716 of temperature anomalies are available but hemispheric estimates are not. (The global 

1717 estimates clearly include hemispheric data, but those data have not been summarized in 

1718 anomaly maps or hemispheric anomaly estimates that were published in the refereed 

1719 scientific literature.) To obtain hemispheric estimates here, we note (as described in 

1720 more detil below) that climate models driven by the known forcings show considerable 

1721 fidelity in reproducing the global anomalies shown by the data for the relevant times, and 

1722 hemispheric anomalies can be assessed within these models. The hemispheric anomalies 

1723 so produced are consistent with our understanding of the available data, and so are used 

1724 here. 

1725 The Palaeoclimate Modelling Intercomparison Project (PMIP2; Harrison et al., 

1726 2002, and see http://pmip2.lsce.ipsl.fr/) coordinates an international effort to 

1727 intercompare paleoclimate simulations produced by a range of climate models, and to 

1728 compare these climate model simulations with data-based paleoclimate reconstructions, 

1729 for a middle Holocene warm time (6 ka ago), and for the last glacial maximum (LGM; 21 

1730 ka ago). A comparison of simulations for 6 and 21 ka ago by PMIP is reported by 

1731 Braconnot et al. (2007). 

1732 As part of this PMIP effort, Harrison et al. (1998) compared global (mostly 

1733 Northern Hemisphere) vegetation patterns simulated using the output of 10 different 

1734 climate model simulations for 6 ka ago and found close agreement with the vegetation 

1735 reconstructed from paleoclimatic records. Similar comparisons on a regional basis for 
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1736 the Northern Hemisphere north of 55 °N (Kaplan et al., 2003), the Arctic (CAPE Project 

1737 Members, 2001), Europe (Brewer et al., 2007) and North America (Bartlein et al., 1998) 

1738 also showed close matches between data and models for the early Holocene. Data-model 

1739 comparisons for the LGM (Bartlein et al., 1998; Kaplan et al., 2003), and Last 

1740 Interglaciation (CAPE Last Interglacial Project Members, 2006; Otto-Bliesner et al., 

1741 2006) reached similar conclusions. (Also see Pollard and Thompson, 1997; Pinot et al., 

1742 1999; Farrera et al., 1999; Kageyama et al., 2001.) The close correspondence of 

1743 paleoclimate data with model simulations of HTM and LIG warmth and LGM cold 

1744 provides confidence that we can compare climate model simulations of past times with 

1745 paleoclimate-based reconstructions of summer temperatures for the Arctic to evaluate the 

1746 magnitude of Arctic amplification. This is done in Figure 5.34, with the details explained 

1747 in the figure caption. Clearly, however, additional data plus analysis of existing as well 

1748 as new data would improve confidence in the results and perhaps reduce the error bars. 

1749 The forcing of the warmth of the middle Pliocene remains unclear. Orbital 

1750 oscillations have continued throughout Earth history, but the Pliocene warmth persisted 

1751 long enough to cross many orbital oscillations, which thus cannot have been responsible 

1752 for the warmth. 

1753 As shown in Figure 5.34, the available data indicate that Arctic temperature 

1754 anomalies were much larger than global ones. The regression line through the four data 

1755 points has a slope of 3.6±0.6, suggesting that the change in Arctic summer temperatures 

1756 tends to be 3 to 4 times larger than globally. 

1757 This trend of larger Arctic anomalies was already well established during the 

1758 greater warmth of the early Cenozoic peak warming and the Cretaceous before. 
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1759 Somewhat greater uncertainty is attached to these older times with different continental 

1760 configurations, so these data are not plotted in Figurre 5.34, but the leading result is fully 

1761 consistent with the regression. Barron et al. (1995) estimated global-average Cretaceous 

1762 temperatures ~6°C warmer than recently. As reviewed by Alley (2003) (also see Bice et 

1763 al., 2006), subsequent work suggests upward revision of tropical sea-surface temperatures 

1764 by up to a few degrees. The Cretaceous peak warmth seems to have been somewhat 

1765 higher than early-Cenozoic values, or perhaps similar (Zachos et al., 2001). In the Arctic, 

1766 as discussed in section 5.4.1, the early Cenozoic (late Paleocene) included temperatures 

1767 probably mostly recording summertime conditions of ~18oC in the ocean and ~17oC on 

1768 land, followed by warming during the short-lived Paleocene-Eocene Thermal Maximum 

1769 to ~23oC in the ocean and 25oC on land (Sluijs et al.; 2006; 2008; Moran et al., 2006; 

1770 Weijers et al., 2007), with no evidence of wintertime ice, and with indications that 

1771 temperatures remained higher than during the mid-Pliocene. Recently, the oceanic site 

1772 has remained ice-covered and near or below freezing during the summer, with much 

1773 colder temperatures in winter; hence, changes in the Arctic were much larger than for the 

1774 globally averaged change. 

1775 We have not included quantitative estimates in Figure 5.34 for the pre-Pliocene 

1776 warm times, but a 3-fold Arctic amplification is consistent with the data within the broad 

1777 uncertainties. The forcing of the Cretaceous and early-Cenozoic warmth seems to have 

1778 been primarily from increased greenhouse-gas concentration, as discussed above, so the 

1779 Arctic amplification seems to be independent of the forcing. This is expected; many of 

1780 the strong Arctic feedbacks serve to amplify temperature change without regard to 

1781 causation—warmer summer temperatures melt reflective snow and ice, regardless of 
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1782 whether the warmth came from changing solar output, orbital configuration, greenhouse-

1783 gas concentrations, or other causes. 

1784 Targeted studies designed to quantitatively assess Arctic amplification of climate 

1785 change remain relatively rare, and additional clarity could be added. The available data, 

1786 as assessed here, point to three-fold to four-fold Arctic amplification, such that, in 

1787 response to the same forcing, Arctic temperature changes are three-fold to four-fold 

1788 larger than hemispheric-average changes, which are dominated by changes in the much 

1789 larger lower-latitude regions. 

1790 

1791 5.5.3 Implications for the future 

1792 Paleoclimatology shows that climate has changed greatly in the Arctic over time, 

1793 and that the changes typically have been much larger in the Arctic than in lower latitudes. 

1794 Strong feedbacks have been important in these Arctic changes, including the ice-albedo 

1795 feedback in which cooling grows reflective snow and ice that amplify cooling, or 

1796 warming causes melting that amplifies warming. Changes in sea-ice coverage of the 

1797 Arctic Ocean have also been critical—open water cannot fall below the freezing point, 

1798 but air over ice-covered water can become very cold in the dark Arctic winter, allowing 

1799 changes in sea-ice coverage to cause perhaps the largest temperature changes observed on 

1800 the planet (see, e.g., Denton et al., 2005). 

1801 Importantly, these feedbacks have served to amplify climate changes with 

1802 different causes, including those forced primarily by greenhouse-gas changes, consistent 

1803 with physical understanding of the nature of the feedbacks. Simple analogy, together 

1804 with physical understanding, then indicate that climate changes will continue to be 
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1805 amplified in the Arctic. In turn, this indicates that continuing greenhouse-gas forcing of 

1806 global climate or other human influences will change climate more in the Arctic than in 

1807 lower-latitude regions. 

1808 
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1808 FIGURE CAPTIONS 

1809 Figure 5.1 Sea ice median extent for September, 2007, compared to averaged intervals 

1810 over recent decades including 1953-2000 (red curve). 1979 to 2000 (orange curve) and 

1811 for September 2005 (green curve). Sea ice extent time series plotted in square kilometers 

1812 shown from 1953 to 2007 in the graph below (Stroeve et al, 2008). The reduction in 

1813 Arctic Ocean summer sea ice in 2007 outpaced the most recent predictions from available 

1814 climate models. 

1815 

1816 Figure 5.2 Projected surface temperature changes for the last decade of the 21st century 

1817 (2090-2099) relative to the period 1980-1999. The map shows the IPCC multi-AOGCM 

1818 average projection for the A1B (balanced emphasis on all energy resources) scenario. 

1819 The most significant warming is projected to occur in the Arctic. (IPCC, 2007; Figure 

1820 SPM6) 

1821 

1822 Figure 5.3 Global mean observed near-surface air temperatures for the month of 

1823 January, 2003 derived from the Atmospheric Infrared Sounder (AIRS) data. Contrast 

1824 between equatorial and Arctic temperatures is greatest during the northern hemisphere 

1825 winter. The transfer of heat from the tropics to the polar regions is a primary feature of 

1826 the Earth’s climate system. 

1827 (Source: http://www-airs.jpl.nasa.gov/graphics/features/airs_surface_temp1_full.jpg, 

1828 0°C=273.15 Kelvin) 

1829 

1830 Figure 5.4 Albedo values in the Arctic 

1831 5a. AVHRR-derived Arctic albedo values in June, 1982-2004 multi-year average, 

1832 showing the strong contrast between snow and ice covered areas (green through red) and 

1833 open water or land (blue). (Courtesy of X. Wang, University of Wisconsin-Madison, 

1834 CIMSS/NOAA) 

1835 5b. Cartoon illustrating albedo feedbacks. Albedo is a fraction of the incident sunlight 

1836 that is reflected back. Snow, ice, and glaciers have high albedo. Dark objects like the 

1837 open ocean has low albedo (about 0,06), absorbing some 93% of the suns energy. Bare 
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1838 ice has an albedo of 0.5 however sea ice covered with snow has an albedo of nearly 90%
 

1839 (Source: http://nsidc.org/seaice/processes/albedo.html).
 

1840
 

1841 Figure 5.5 Changes in vegetation cover across the Arctic region can influence albedo,
 

1842 altering the onset of snow melt in the shoulder seasons of spring and fall. A) Progression 


1843 of the melt season in Northern Alaska in May 2001 (top) and May 2002 (bottom)
 

1844 demonstrates how areas with exposed shrubs show earlier snow melt. B) Example of the
 

1845 altered albedo showing dark branches against reflective snow surface (Sturm et al., 2005;
 

1846 picture courtesy of Matt Sturm).
 

1847
 

1848 Figure 5.6 Permafrost, or permanently frozen ground, shows a clear warming trend over 

1849 recent decades in sites throughout the Arctic, however, local effects can cause 

1850 perturbations in this trend. Shown here are selective sites in the Northern Hemisphere, 

1851 including: A. Alaska: WD-West Dock; DH-Deadhorse; FB-Franklin Bluffs; HV-Happy 

1852 Valley; LG-Livengood; GK-Gulkana; BL-Birch Lake; OM-Old Man. B. Northwest 

1853 Canada: WG-Wrigley; NW-Norman Wells; NA-Northern Alberta; FS-Fort Simpson. C. 

1854 European Russia: VT-Vorkuta; RG-Rogovoi; KT-Karataikha; MB-Mys Bolvansky. D. 

1855 Northwest Siberia: UR-Urengoi; ND-Nadym. E. Yakutia: TK-Tiksi; YK-Yakutsk. F. 

1856 Central Asia: KZ-Kazakhstan; MG-Mongolia (Brown and Romanovsky, in press) 

1857 

1858 Figure 5.7 Inflows and outflows of water in the Arctic Ocean. Red lines show the 

1859 components and paths of the surface and Atlantic Water layer in the Arctic. Black 

1860 arrows show the pathways of Pacific water inflow from 50-200 m depth. Blue arrows 

1861 denote surface water circulation; major river inflow is shown in green. Red arrows show 

1862 the movements of the density driven Atlantic water and intermediate water masses into 

1863 the Arctic.. (AMAP, 1998). 

1864 

1865 Figure 5.8 Fossil pollen assemblages can be used to reconstruct habitats based on the 

1866 modern climatic range of the collective species. This change can then be used to estimate 

1867 past temperatures or the seasonality of a particular site. Correlation of global sea level 
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1868 curve (Lambeck et al., 2002), northern hemisphere summer insolation (Berger and 

1869 Loutre, 1991,) and the Greenland Ice Sheet (GISP2) δ18O record (Grootes et al., 1993), 

1870 ages all given in calendar years. The GISP2 record also shows the timing of Heinrich 

1871 events (H1, H2 etc.) and numbered Dansgaard/Oscheger events. The bottom panel shows 

1872 temporal changes in the percentages of the main taxa of trees and shrubs, herbs and 

1873 spores at Elikchan 4 Lake in the Magadan region of Chukotka, Russia. The base of this 

1874 core is roughly 60 ka BP (Lozhkin and Anderson, 1996) but the record shows that during 

1875 the period from roughly 27 ka to nearly 55 ka, vegetation, especially treeline recovered 

1876 over short intervals to nearly Holocene conditions at the same time the isotopic record in 

1877 Greenland suggests repeated warm cold cycles of change. Note that lake core axis is 

1878 depth, and not time (Brigham-Grette et al., 2004) 

1879 

1880 Figure 5.9 14 Microscopic marine plankton known as foraminifera (inset example) grow 

1881 a shell of calcium carbonate (CaCO3) in isotopic equilibrium or near equilibrium with 

1882 ambient sea water. The oxygen isotopic ratio measured in these shells (expressed in 

1883 ∂18O parts per million (ppm) = 103[(Rsample/Rstandard)-1], where Rx = (18O)/(16O) is the ratio 

1884 of isotopic composition of a sample compared to that of an established standard, such as 

1885 ocean water), can be used to determine the temperature of the surrounding waters. 

1886 However a number of factors, other than temperature, can influence the ratio of 18O to 

1887 16O. While warmer temperatures will produce a more negative (lighter) ∂18O ratio, 

1888 glacial meltwater and river runoff with depleted values will also produce lighter values. 

1889 On the other hand, cooler temperatures or higher salinity waters will drive the ratio up, 

1890 making it heavier, or more positive. The growth of large continental ice sheets selectively 

1891 removes the lighter isotope (16O), leaving the ocean enriched in the heavier isotope (18O). 

1892 

1893 Figure 5.10 Open and closed lake systems across the arctic regions differ hydrologically 

1894 according to the balance between inflow, outflow and the ratio of precipitation to 

1895 evaporation. These parameters dominate factors influencing lake stable isotopic 

1896 chemistry as well as the depositional character of the sediments and organic matter. Lake 

1897 El’gygytgyn in the arctic Far East of Russia is annually open and flows to the Bering Sea 
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1898 during July and August, but the outlet closes by early September as lake level drops and 

1899 storms move beach gravels to choke the outlet. (Brigham-Grette photo). 

1900 

1901 Figure 5.11 Locations of Arctic and sub-Arctic lakes (blue) and ice cores (green) for 

1902 which oxygen isotope records documenting Holocene paleoclimate have been 

1903 constructed. Map adapted from the Atlas of Canada, © 2002. Her Majesty the Queen in 

1904 Right of Canada, Natural Resources Canada. / Sa Majesté la Reine du chef du Canada, 

1905 Ressources naturelles Canada. 

1906 

1907 Figure 5.12 a) One meter section of the Greenland Ice Core Project core from a depth of 

1908 1837 meters showing annual layers. (Source: Courtesy of Eric Cravens, Assistant 

1909 Curator, U.S. National Ice Core Laboratory). b) Field site of Summit Station on the top of 

1910 the Greenland Ice sheet (photo by Michael Morrison, GISP2 SMO, University of New 

1911 Hampshire; NOAA Paleoslide Set) 

1912 

1913 Figure 5.13 Relationship between the isotopic composition of precipitation and 

1914 temperature in the colder parts of the world where ice sheets exist. Data from the 

1915 International Atomic Energy Agency (IAEA) network (Fricke and O’Neil, 1999; 

1916 calculated as the means of the summer and winter data of their Table 1 for all sites with 

1917 complete data), and from Greenland (x; Johnsen et al., 1989) and Antarctica (+; Dahe et 

1918 al., 1994). For the IAEA data, open squares are poleward of 60° latitude (but with no 

1919 inland ice-sheet sites), open circles from 45° to 60°, and filled circles equatorward of 45°. 

1920 About 71% of the Earth’s surface area is equatorward of 45°, where dependence of δ18O 

1921 on temperature is weak to nonexistent. Only 16% of Earth’s surface falls in the 45° to 

1922 60° band, with only 13% poleward of 60°. The linear array is clearly dominated by data 

1923 from the ice sheets. 

1924 

1925 Figure 5.14 Paleotemperature estimates of site and source waters from Greenland: GRIP 

1926 and NorthGrip Masson-Delmotte et al.. 2005). GRIP (left) and NorthGRIP (right) 

1927 site(top) and source (bottom) temperatures derived from GRIP and NorthGRIP δ18O and 
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1928 deuterium excess corrected for seawater δ18O (until 6000 BP). Shaded lines show an 

1929 estimate of the uncertainties due to the tuning of the isotopic model and the analytical 

1930 precision. Solid line is GRIP temperature derived from the borehole temperature profile 

1931 (Dahl-Jensen et al., 1998). 

1932 

1933 Figure 5.15 Biomarker alkenone. U37 
K versus measured water temperature for surface 

1934 mixed layer (0–30 m) samples. (a) Atlantic region. The empirical 3rd order polynomial 

1935 regression for samples collected in >4 C waters, excluding outlier data from the 

1936 southwest Atlantic margin and northeast Atlantic upwelling regime, is U37 
K = 1.004 10 

1937 4T3 + 5.744 10 3T2 6.207 10 2T + 0.407 (r2 = 0.98, n = 413). (b) Pacific, Indian, and 

1938 Southern Ocean regions. The empirical linear regression of Pacific samples is U37 
K = 

1939 0.0391T 0.1364 (r2 = 0.97, n = 131). Pacific regression does not include the Indian and 

1940 Southern Ocean data. (c) Global data. The empirical 3rd order polynomial regression, 

1941 excluding anomalous southwest Atlantic margin data, is U37 
K = 5.256 10 5T3 + 2.884 

1942 10 3T2 8.4933 10 3T + 9.898 (r2 = 0.97, n = 588). Samples excluded from the 

1943 regressions are shown by crosses. (Conte et al, 2006) 

1944 

1945 Figure 5.16 Diatom assemblages reflect a variety of environmental conditions in Arctic 

1946 lake systems. Transitions, especially rapid change from one assemblage to another can 

1947 reflect large changes in light conditions, nutrient availability and/or temperature, for 

1948 example. Biogenic silica, dominated by the silica skeletal framework constructed by 

1949 diatoms, is commonly measured in lake sediments as a measure of past changes in 

1950 aquatic primary productivity. 

1951 

1952 Figure 5.17 Ice and snow cover often play an important role in influencing the physical, 

1953 chemical, and biological characteristic of Arctic lakes. This schematic shows changing 

1954 ice and snow conditions on an Arctic lake during relatively (a) cold, (b) moderate, and (c) 

1955 warm conditions. During colder years, a permanent raft of ice may persist throughout the 

1956 short summer, precluding the development of large populations of phytoplankton, and 

1957 restricting much of the primary production to the shallow, open water moat. Many other 
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1958 physical, chemical and biological changes occur in lakes that are either directly or 

1959 indirectly affected by snow and ice cover (see Table 1; Douglas and Smol 1999). 

1960 Modified from Smol (1988). 

1961 

1962 Figure 5.18 Lake ice melts as it continues to warm (A – D). Eventually, in deeper lakes 

1963 (vs ponds) thermal stratification may also occur (or be prolonged) during the summer 

1964 months (D), further altering the limnological characteristics of the lake. Modified from 

1965 Douglas (2007). 

1966 

1967 Figure 5.19 The form and distribution of wind-blown silt (loess), wind-blown sand 

1968 (dunes), and other deposits of wind-blown sediment in Alaska, have been use to infer 

1969 both Holocene and last-glacial past wind directions. (Compiled from multiple sources by 

1970 Muhs and Budahn, 2006). 

1971 

1972 Figure 5.20 At this unnamed, hydrologically closed lake in the Yukon Flats Wildlife 

1973 Refuge in Alaska, concentric rings of vegetation have developed progressively inward as 

1974 water levels lowered due to a negative change in the lake's overall water balance. Historic 

1975 Landsat imagery and air photographs indicate that these shorelines formed during the last 

1976 ~40 years. (Photo by Lesleigh Anderson) 

1977 

1978 Figure 5.21 Recovered sections and palynological and geochemical results across the 

1979 Paleocene-Eocene Thermal Maximum ~55 million yrs ago of IODP Hole 302-4A (87° 

1980 52.00' N; 136° 10.64' E; 1,288 m water depth, in the central Arctic Ocean basin). 

1981 Mean annual surface water temperatures (as indicated in the TEX86’ column) are 

1982 estimated to have reached 23oC similar to waters in the tropics today. [Error bars for 

1983 Core 31X show the uncertainty of its stratigraphic position. Orange bars indicate 

1984 intervals affected by drilling disturbance.] Stable carbon isotopes are expressed relative to 

1985 the PeeDee Belemnite standard. Low-salinity-tolerant dinocysts comprise Senegalinium 

1986 spp., Cerodinium spp., and Polysphaeridium spp., while Membranosphaera spp., 

1987 Spiniferites ramosus complex, and Areoligera-Glaphyrocysta cpx. represent the typical 
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1988 normal marine species. Arrows and A. aug (second column) indicate the first and last 

1989 occurrences of dinocyst Apectodinium augustum – a diagnostic indicator of PETM warm 

1990 conditions. (Sluijs et al., 2006) 

1991 

1992 Figure 5.22 Atmospheric CO2 and continental glaciation 400 Ma to present. Vertical blue 

1993 bars mark the timing and palaeolatitudinal extent of ice sheets (after Crowley, 1998). 

1994 Plotted CO2 records represent five-point running averages from each of the four major 

1995 proxies (see Royer, 2006 for details of compilation). Also plotted are the plausible ranges 

1996 of CO2 from the geochemical carbon cycle model GEOCARB III (Berner and Kothavala, 

1997 2001). All data have been adjusted to the Gradstein et al. (2004) time scale. Extensive 

1998 growth of continental ice sheets occurs when CO2 is low. (source: Jansen, 2007: Figure 

1999 6.1) 

2000 

2001 Figure 5.23 The average isotopic composition (δ18O) of bottom-dwelling foraminifera 

2002 from a globally distributed set of 57 sediment cores covering the last 5.3 Ma (modified 

2003 from Lisiecki and Raymo, 2005). The δ18O is controlled primarily by global ice volume 

2004 and deep-ocean temperature, with less ice and/or warmer temperatures upward. The 

2005 influences of all the Milankovitch frequencies of Earth’s orbital variation are present 

2006 throughout, but the increase in glaciation about 2.7 Ma ago occurred with establishment 

2007 of a strong 41 ka variability linked to Earth’s obliquity (changes in tilt of Earth’s spiin 

2008 axis), and the additional increase in glaciation about 1.2-0.7 Ma involved a shift to 

2009 stronger 100 ka variability. Dashed lines are used because the changes seem to have been 

2010 somewhat gradual. The general trend toward higher δ18O that runs through this series 

2011 reflects the long-term drift toward a colder Earth that began in the early Cenozoic (see 

2012 Fig. 4.8). 

2013 

2014 Figure 5.24 a) Greenland without ice for the last time? Dark green: boreal forest, light 

2015 green: deciduous forest; brown: tundra and alpine heaths; white: ice caps. The north-

2016 south temperature gradient is constructed from a comparison between North Greenland 

2017 and NW European temperatures, using standard lapse rate, and assuming precipitation 
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2018 distribution after the same pattern as known from the Holocene. The topographical base 

2019 comes from the model by Letreguilly et al. 1991 of Greenland’s sub-ice topography after 

2020 isostatic recovery. b) Upper part of the Kap København Formation, North Greenland. 

2021 The sand was deposited in an estuary 2.4 Ma ago, and contain abundant well preserved 

2022 leaves, seeds, twigs, and insect remains. (Photograph of S.V. Funder). 

2023 
2024 Figure 5.25 The largely marine Gubik Formation on the North Slope of Alaska contains 

2025 three superposed lower units recording relative sea level as high +30-+40 m. Pollen in 

2026 these same deposits suggest that borderland vegetation at each of these times was less 

2027 forested with boreal forests or spruce-birch woodlands at 2.7 Ma giving way to larch and 

2028 spruce forests at about 2.6 and open tundra by ca. 2.4 Ma (see photos with oldest at the 

2029 top from Robert Nelson, Colby College who did the pollen work). Isotopic reference time 

2030 series of Lisecki and Raymo (2005) suggests best as assignments for these sea level 

2031 events (Brigham and Carter, 1992). 

2032 
2033 Figure 5.26 Glacial cycles over the past 800ka derived from marine-sediment and ice 

2034 cores (McManus, 2004). The history of deep-ocean temperatures and global ice volume 

2035 is inferred from δ18O measured in bottom-dwelling foraminifera shells preserved in 

2036 Atlantic Ocean sediments. Air temperatures over Antarctica are inferred from the ratio of 

2037 deuterium to hydrogen in ice from central Antarctica (EPICA, 2004). Marine Isotope 

2038 Stage 11 (MIS 11) is an interglacial with similar orbital parameters to the Holocene, yet 

2039 lasted about twice as long as most interglacials. Note the smaller magnitude and less-

2040 pronounced interglacial warmth of the glacial cycles that preceded MIS 11. 

2041 Interglaciations older than MIS 11 were less warm than subsequent integlaciations. 

2042 
2043 Figure. 5.27 Polar projection from CAPE Last Interglacial Project Members (2006) 

2044 showing regional maximum LIG summer temperature anomalies relative to present 

2045 derived from paleotemperature proxies (see tables 1 and 2 in from CAPE Last 

2046 Interglacial Project Members, 2006). Terrestrial sites in circles, marine sites in squares. 

2047 
2048 Figure 5.28 Fossiliferous paleoshorelines and marine sediments were used by Brigham-

2049 Grette and Hopkins (1995) to evaluate the seasonality of coastal sea ice on both sides of 
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2050 the Bering Strait during the Last Interglaciation. The winter sea limit is estimated to have 

2051 been north of the narrowest section of the strait, 800 km north of modern limits. Lozhkin 

2052 and Anderson (1995) suggest from pollen data derived from Last Interglacial lake 

2053 sediments that tundra was nearly eliminated from the Russian coast at this time. More 

2054 open water resulted in an increase in some taxa tolerant of deeper winter snows in 

2055 Chukokta during the warm interglaciation. (Map of William Manley 

2056 http://instaar.colorado.edu/QGISL/). 

2057 
2058 Figure 5.29 The Arctic Holocene Thermal Maximum (HTM) as expressed in a 

2059 comparison of seasonal insolation patterns at 70° N (Berger & Loutre 1991), 

2060 reconstructed Greenland air temperature from the GISP2 drilling project (Alley 2000), 

2061 the age distribution of radiocarbon-dated fossil remains of different tree genera from 

2062 north of present treeline (MacDonald et al., 2007), and the frequency of Western Arctic 

2063 sites experiencing HTM conditions. (Kaufman et al. 2004) 

2064 

2065 Figure. 5.30 The timing of initiation and termination of the HTM in the Western Arctic 

2066 (Kaufman et al., 2004). 

2067 a. Regions reviewed in Kaufman et al. 2004 

2068 b. Initiation of the Holocene thermal maximum in the western Arctic. Longitudinal 

2069 distribution (left) and frequency distribution (right) 

2070 c. Spatio-temporal pattern of the Holocene thermal maximum (HTM) in the western 

2071 Arctic. Initiation (upper) and termination (lower) of the HTM. Gray dots indicate 

2072 equivocal evidence for the HTM. Dot colors indicate bracketing ages of the HTM, 

2073 which are contoured using the same color scheme 

2074 

2075 Figure. 5.31 The northward extension of larch (Larix) across the Eurasian Arctic during 

2076 the HTM compared to present treeline larch forest distribution and anticipated (Arctic 

2077 Climate Impact Assessment, 2005) northern forest limits due to climate warming 

2078 (MacDonald et al., 2007). 

2079 
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2080 Fig. 5.32 Upper panel: The record of summer melting on the Agassiz Ice Cap, northern 

2081 Ellesmere Island, Canada over the course of the Holocene. Melt indicates the fraction of 

2082 each core section containing evidence of melting (from Koerner and Fisher, 1990). 

2083 Middle panel: Summer temperature anomalies estimated from the elevation of 14C dated 

2084 sub-fossil pine wood samples (Pinus sylvestris L.) in the Scandes mountains, central 

2085 Sweden (black bars) relative to temperatures at the modern pine limit in the region. 

2086 Upper limit of pine growth is indicated by the dashed line. Changes in temperature were 

2087 estimated by assuming a lapse rate of 6 °C km-1 (from Dahl and Nesje 1996, based on 

2088 samples collected by L. Kullman and G. and J. Lundqvist). Lower panel: 

2089 Paleotemperature reconstruction from oxygen isotopes in calcite sampled along the 

2090 growth axis of a stalagmite from a cave at Mo i Rana, in northern Norway. Growth 

2091 ceased around A.D. 1750. (from Lauritzen 1996; Lauritzen and Lundberg 1998; 2002). 

2092 Figure from Bradley (2000). 

2093 
2094 Figure 5.33 Schematic diagrams of temperature variations over the past thousand years. 

2095 The dotted line nominally represents conditions near the beginning of the twentieth 

2096 century. From the IPCC AR1 (Fig. 7.1; 1990). Recent reviews (e.g. Bradley et al., 2003) 

2097 suggest that this curve probably is most representative of the northern North Atlantic 

2098 region rather than a reflection of global temperature. 

2099 
2100 Figure 5.34 Paleoclimate data quantify the magnitude of Arctic amplification. Shown 

2101 are paleoclimate estimates of Arctic summer temperature anomalies relative to recent, 

2102 and the appropriate northern-hemisphere or global summer temperature anomalies, 

2103 together with their uncertainties, for the last glacial maximum (LGM; ~20 ka ago), 

2104 Holocene thermal maximum (HTM; ~8 ka ago), last interglaciation (LIG; 130-125 ka 

2105 ago) and middle Pliocene (~3.5-3.0 Ma ago). The trend line suggests that summer 

2106 temperature changes are amplified 3 to 4 times in the Arctic. Explanation of data sources 

2107 follows, for the different times considered beginning with the most recent. 

2108 

2109 Holocene Thermal Maximum (HTM): Arctic ΔT = 1.7 ± 0.8 °C; NH ΔT = 

2110 0.5 ± 0.3 °C; Global ΔT = 0 ± 0.5 °C. 
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2111 A recent summary of summer temperature anomalies for the western Arctic (Kaufman et 

2112 al., 2004) built on earlier summaries (Kerwin et al., 1999; Cape Project Members, 2001), 

2113 and is consistent with more-recent reconstructions (Kaplan and Wolfe, 2006; Flowers et 

2114 al., 2007). Although the Kaufman et al. (2004) summary covered only the western half 

2115 of the Arctic, the earlier summaries by Kerwin et al., (1999) and Cape Project Members 

2116 (2001) indicated that similar anomalies characterized the Eastern Arctic, with all 

2117 syntheses reporting the largest anomalies in the North Atlantic sector. Few data are 

2118 available for the central Arctic Ocean; we assume that the circumpolar dataset provides 

2119 an adequate reflection of air temperatures across the Arctic Ocean as well. 

2120 Climate models suggest that the average planetary anomaly was concentrated over 

2121 the Northern Hemisphere. Braconnot et al. (2007) summarized the simulations from 10 

2122 different climate model contributions to the PMIP2 project that compare simulated 

2123 summer temperatures 6 ka ago with recent values. The global average summer 

2124 temperature anomaly 6 ka ago was 0 ± 0.5 °C, whereas the Northern Hemisphere 

2125 anomaly was 0.5 ± 0.3 °C. These patterns are similar to model results described by 

2126 Hewitt and Mitchell (1998) and Kitoh and Murakami (2002) for 6 ka ago, and a global 

2127 simulation for 9 ka (Renssen et al., 2006), that simulate little summer temperature 

2128 difference outside the Arctic when compared to pre-industrial temperatures. 

2129 

2130 Last Glacial Maximum (LGM): Arctic ΔT = -20 ± 5 °C; Global and Northern 

2131 Hemisphere ΔT = -5 ± 1 °C 

2132 Quantitative estimates of temperature reductions during the peak of the LGM are less 

2133 widespread in the Arctic than during warm times. Ice-core borehole temperatures offer 

2134 the most compelling evidence (Cuffey et al., 1995; Dahl-Jensen et al., 1998), with 

2135 additional support from biological proxies in the North Pacific sector (Elias et al., 1996a), 

2136 where no ice cores are available that extend back to the LGM. Because of the limited 

2137 datasets for the LGM temperature reduction in the Arctic, we incorporate a large 

2138 uncertainty. The global-average temperature decrease during peak glaciations based on 

2139 paleoclimate proxy data was 5 to 6 °C, with little difference between the two hemispheres 

2140 (Jansen et al., 2007; Farrera et al., 1999; Braconnot et al., 2007). A similar temperature 
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2141 anomaly is derived from climate model simulations (Otto-Bliesner et al., 2007). 

2142 

2143 Last Interglaciation (LIG): Arctic ΔT = 5 ± 1 °C; Global and NH ΔT = 1 ± 1 

2144 °C) 

2145 A recent summary of all available quantitative reconstructions of summer temperature 

2146 anomalies for the Arctic during peak LIG warmth shows a spatial pattern similar to the 

2147 HTM reconstructions, with the largest anomalies in the North Atlantic sector and the 

2148 smallest anomalies in the North Pacific sector, but with substantially larger anomalies (5 

2149 ± 1 °C) than during the HTM (CAPE Last Interglacial Project Members, 2006). A 

2150 similar pattern of LIG summer temperature anomalies is apparent in climate model 

2151 simulations (Otto-Bliesner et al., 2006). Global and Northern Hemisphere summer 

2152 temperature anomalies are derived from summaries in CLIMAP Project Members (1984), 

2153 Crowley (1990), Montoya et al. (2000) and Bauch and Erlenkeuser (2003). 

2154 

2155 Middle Pliocene: Arctic ΔT = 12 ± 3 °C; Global ΔT = 4 ± 2 °C) 

2156 The widespread occurrence of forests throughout the Arctic in the middle Pliocene offers 

2157 a glimpse into a notably warm time in the Arctic, with essentially modern continental 

2158 configurations and connections between the Arctic Ocean and the global ocean. 

2159 Reconstructed Arctic temperature anomalies are available from several sites that show 

2160 much warmth with no summer sea ice in the Arctic Ocean basin. These sites include the 

2161 Canadian Arctic Archipelago (Dowsett et al., 1994; Elias and Matthews, 2002; 

2162 Ballantyne et al., 2006), Iceland (Buchardt and Símonarson, 2003), and the North Pacific 

2163 (Heusser and Morley, 1996). A global summary of mid-Pliocene biomes by Salzmann et 

2164 al. (2008) concluded that Arctic mean-annual-temperature anomalies were in excess of 10 

2165 °C; some sites indicate temperature anomalies up to 15 °C. Estimates of global sea-

2166 surface temperature anomalies are from Dowsett (2007). 

2167 

2168 Global reconstructions of mid-Pliocene temperature anomalies from proxy data and 

2169 general circulation models show modest warming across low to mid-latitudes, averaging 

2170 4 ± 1 °C (Dowsett et al., 1999; Raymo et al.,. 1996; Sloan et al., 1996, Budyko et al., 
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2171 1985; Haywood and Valdes, 2004; Jiang et al. 2005; Haywood and Valdes, 2006;
 

2172 Salzmann et al., 2008).
 

2173
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2173   
2174   
2175   

2176 
2177 Figure 5.1 Sea ice median extent for September, 2007, compared to averaged intervals 

2178 over recent decades including 1953-2000 (red curve). 1979 to 2000 (orange curve) and 

2179 for September 2005 (green curve). Sea ice extent time series plotted in square kilometers 

2180 shown from 1953 to 2007 in the graph below (Stroeve et al, 2008). The reduction in 

2181 Arctic Ocean summer sea ice in 2007 outpaced the most recent predictions from available 

2182 climate models. 

2183 
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2183 

2184 Geographical pattern of surface warming 

2185 

2186 Figure 5.2 Projected surface temperature changes for the last decade of the 21st century 

2187 (2090-2099) relative to the period 1980-1999. The map shows the IPCC multi-AOGCM 

2188 average projection for the A1B (balanced emphasis on all energy resources) scenario. 

2189 The most significant warming is projected to occur in the Arctic. (IPCC, 2007; Figure 

2190 SPM6) 

2191 
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2192 

2193 Figure 5.3 Global mean observed near-surface air temperatures for the month of 

2194 January, 2003 derived from the Atmospheric Infrared Sounder (AIRS) data. Contrast 

2195 between equatorial and Arctic temperatures is greatest during the northern hemisphere 

2196 winter. The transfer of heat from the tropics to the polar regions is a primary feature of 

2197 the Earth’s climate system (0°C=273.15 Kelvin) 

2198 (Source: http://www-airs.jpl.nasa.gov/graphics/features/airs_surface_temp1_full.jpg) 

2199 
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2200 

2201 a b 

2202 Figure 5.4 Albedo values in the Arctic 

2203 5a. AVHRR-derived Arctic albedo values in June, 1982-2004 multi-year average, 

2204 showing the strong contrast between snow and ice covered areas (green through red) and 

2205 open water or land (blue). (Courtesy of X. Wang, University of Wisconsin-Madison, 

2206 CIMSS/NOAA) 

2207 5b. Relative albedo (solar reflectance) of open water, bare ice, and ice covered with 

2208 snow. The areal distribution and percentages these surfaces at high latitudes exerts a 

2209 strong influence on the planetary energy balance through the ice-albedo feedback 

2210 mechanism. 

2211 
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2212 

2213 

2214 Figure 5.5 Changes in vegetation cover across the Arctic region can influence albedo, 

2215 altering the onset of snow melt in the shoulder seasons of spring and fall. a) Progression 

2216 of the melt season in Northern Alaska in May 2001 (top) and May 2002 (bottom) 

2217 demonstrates how areas with exposed shrubs show earlier snow melt. b) Example of the 

2218 altered albedo showing dark branches against reflective snow surface (Sturm et al., 2005; 

2219 picture courtesy of Matt Sturm). 

2220 
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2221 

2222 Figure 5.6 Permafrost, or permanently frozen ground, shows a clear warming trend over 

2223 recent decades in sites throughout the Arctic, however, local effects can cause 

2224 perturbations in this trend. Shown here are selective sites in the Northern Hemisphere, 

2225 including: A. Alaska: WD-West Dock; DH-Deadhorse; FB-Franklin Bluffs; HV-Happy 

2226 Valley; LG-Livengood; GK-Gulkana; BL-Birch Lake; OM-Old Man. B. Northwest 

2227 Canada: WG-Wrigley; NW-Norman Wells; NA-Northern Alberta; FS-Fort Simpson. C. 

Chapter 5 Peer Review Copy 100 



        
      

 

      

        

          

        

 

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

2228 European Russia: VT-Vorkuta; RG-Rogovoi; KT-Karataikha; MB-Mys Bolvansky. D.
 

2229 Northwest Siberia: UR-Urengoi; ND-Nadym. E. Yakutia: TK-Tiksi; YK-Yakutsk. F.
 

2230 Central Asia: KZ-Kazakhstan; MG-Mongolia (Brown and Romanovsky, in press)
 

2231
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2231 

2232 
2233 Figure 5.7 Inflows and outflows of water in the Arctic Ocean. Red lines show the 

2234 components and paths of the surface and Atlantic Water layer in the Arctic. Black 

2235 arrows show the pathways of Pacific water inflow from 50-200 m depth. Blue arrows 

2236 denote surface water circulation; major river inflow is shown in green. Red arrows show 

2237 the movements of the density driven Atlantic water and intermediate water masses into 

2238 the Arctic. (Source: AMAP, 1998; Macdonald, R.W. and J.M. Bewers, 1996). 

2239 

Chapter 5 Peer Review Copy 102 



        
      

 

      

   

  

         

           

             

         

            

            

           

2239 

THIS DOCUMENT IS FOR PEER REVIEW ONLY 
DO NOT DISTRIBUTE, CITE, OR QUOTE 

2240 

2241 Figure 5.8 Fossil pollen assemblages can be used to reconstruct habitats based on the 

2242 modern climatic range of the collective species. This change can then be used to estimate 

2243 past temperatures or the seasonality of a particular site. Correlation of global sea level 

2244 curve (Lambeck et al., 2002), northern hemisphere summer insolation (Berger and 

2245 Loutre, 1991,) and the Greenland Ice Sheet (GISP2) δ18O record (Grootes et al., 1993), 

2246 ages all given in calendar years. The GISP2 record also shows the timing of Heinrich 

2247 events (H1, H2 etc.) and numbered Dansgaard/Oscheger events. The bottom panel shows 

Chapter 5 Peer Review Copy 103 



        
      

 

      

              

               

              

         

              

             

        

 

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

2248 temporal changes in the percentages of the main taxa of trees and shrubs, herbs and 

2249 spores at Elikchan 4 Lake in the Magadan region of Chukotka, Russia. The base of this 

2250 core is roughly 60 ka BP (Lozhkin and Anderson, 1996) but the record shows that during 

2251 the period from roughly 27 ka to nearly 55 ka, vegetation, especially treeline recovered 

2252 over short intervals to nearly Holocene conditions at the same time the isotopic record in 

2253 Greenland suggests repeated warm cold cycles of change. Note that lake core axis is 

2254 depth, and not time (Brigham-Grette et al., 2004) 

2255 
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2256 

2257 

2258 Figure 5.9 14 Microscopic marine plankton known as foraminifera (inset example) grow 

2259 a shell of calcium carbonate (CaCO3) in isotopic equilibrium or near equilibrium with 

2260 ambient sea water. The oxygen isotopic ratio measured in these shells (expressed in 

2261 ∂18O parts per million (ppm) = 103[(Rsample/Rstandard)-1], where Rx = (18O)/(16O) is the ratio 

2262 of isotopic composition of a sample compared to that of an established standard, such as 

2263 ocean water), can be used to determine the temperature of the surrounding waters. 

2264 However a number of factors, other than temperature, can influence the ratio of 18O to 

2265 16O. While warmer temperatures will produce a more negative (lighter) ∂18O ratio, 

2266 glacial meltwater and river runoff with depleted values will also produce lighter values. 

2267 On the other hand, cooler temperatures or higher salinity waters will drive the ratio up, 

2268 making it heavier, or more positive. The growth of large continental ice sheets selectively 

2269 removes the lighter isotope (16O), leaving the ocean enriched in the heavier isotope (18O). 

2270 
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2271 

2272 Figure 5.10 Open and closed lake systems across the arctic regions differ hydrologically 

2273 according to the balance between inflow, outflow and the ratio of precipitation to 

2274 evaporation. These parameters dominate factors influencing lake stable isotopic 

2275 chemistry as well as the depositional character of the sediments and organic matter. Lake 

2276 El’gygytgyn in the arctic Far East of Russia is annually open and flows to the Bering Sea 

2277 during July and August, but the outlet closes by early September as lake level drops and 

2278 storms move beach gravels to choke the outlet. (Brigham-Grette photo). 

2279 
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2280 

2281 Figure 5.11 Locations of Arctic and sub-Arctic lakes (blue) and ice cores (green) for 

2282 which oxygen isotope records documenting Holocene paleoclimate have been 

2283 constructed. Map adapted from the Atlas of Canada, © 2002. Her Majesty the Queen in 

2284 Right of Canada, Natural Resources Canada. / Sa Majesté la Reine du chef du Canada, 

2285 Ressources naturelles Canada. 

2286 
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2286 
a b

2287 

2288 Figure 5.12 a) One meter section of the Greenland Ice Core Project core from a depth of 

2289 1837 meters showing annual layers. (Source: courtesy of Eric Cravens, Assistant Curator, 

2290 U.S. National Ice Core Laboratory) . b) Field site of Summit Station on the top of the 

2291 Greenland Ice sheet (photo by Michael Morrison, GISP2 SMO, University of New 

2292 Hampshire; NOAA Paleoslide Set) 

2293 
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2293 

2294 

2295 Figure 5.13 Relationship between the isotopic composition of precipitation and 

2296 temperature in the colder parts of the world where ice sheets exist. Data from the 

2297 International Atomic Energy Agency (IAEA) network (Fricke and O’Neil, 1999; 

2298 calculated as the means of the summer and winter data of their Table 1 for all sites with 

2299 complete data), and from Greenland (x; Johnsen et al., 1989) and Antarctica (+; Dahe et 

2300 al., 1994). For the IAEA data, open squares are poleward of 60° latitude (but with no 

2301 inland ice-sheet sites), open circles from 45° to 60°, and filled circles equatorward of 45°. 

2302 About 71% of the Earth’s surface area is equatorward of 45°, where dependence of δ18O 

2303 on temperature is weak to nonexistent. Only 16% of Earth’s surface falls in the 45° to 

2304 60° band, with only 13% poleward of 60°. The linear array is clearly dominated by data 

2305 from the ice sheets. (Source: Alley and Cuffey, 2001) 

2306 
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2307 

2308 Figure 5.14 Paleotemperature estimates of site and source waters from Greenland: GRIP 

2309 and NorthGrip Masson-Delmotte et al.. 2005). GRIP (left) and NorthGRIP (right) 

2310 site(top) and source (bottom) temperatures derived from GRIP and NorthGRIP δ18O and 

2311 deuterium excess corrected for seawater δ18O (until 6000 BP). Shaded lines show an 

2312 estimate of the uncertainties due to the tuning of the isotopic model and the analytical 

2313 precision. Solid line is GRIP temperature derived from the borehole temperature profile 

2314 (Dahl-Jensen et al., 1998). 

2315 
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2315 

2316 Figure 5.15 Biomarker alkenone. U37 
K versus measured water temperature for surface 

2317 mixed layer (0–30 m) samples. (a) Atlantic region. The empirical 3rd order polynomial 
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2318 regression for samples collected in >4 C waters, excluding outlier data from the 

2319 southwest Atlantic margin and northeast Atlantic upwelling regime, is U37 
K = 1.004 10 

2320 4T3 + 5.744 10 3T2 6.207 10 2T + 0.407 (r2 = 0.98, n = 413). (b) Pacific, Indian, and 

2321 Southern Ocean regions. The empirical linear regression of Pacific samples is U37 
K = 

2322 0.0391T 0.1364 (r2 = 0.97, n = 131). Pacific regression does not include the Indian and 

2323 Southern Ocean data. (c) Global data. The empirical 3rd order polynomial regression, 

2324 excluding anomalous southwest Atlantic margin data, is U37 
K = 5.256 10 5T3 + 2.884 

2325 10 3T2 8.4933 10 3T + 9.898 (r2 = 0.97, n = 588). Samples excluded from the 

2326 regressions are shown by crosses. (Conte et al, 2006) 

2327 
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2328 

2329 Figure 5.16 Diatom assemblages reflect a variety of environmental conditions in Arctic 

2330 lake systems. Transitions, especially rapid change from one assemblage to another can 

2331 reflect large changes in light conditions, nutrient availability and/or temperature, for 

2332 example. Biogenic silica, dominated by the silica skeletal framework constructed by 

2333 diatoms, is commonly measured in lake sediments as a measure of past changes in 

2334 aquatic primary productivity. 

2335 

2336 
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2337 

2338 Figure 5.17 Ice and snow cover often play an important role in influencing the physical, 

2339 chemical, and biological characteristic of Arctic lakes. This schematic shows changing 

2340 ice and snow conditions on an Arctic lake during relatively (a) cold, (b) moderate, and (c) 

2341 warm conditions. During colder years, a permanent raft of ice may persist throughout the 

2342 short summer, precluding the development of large populations of phytoplankton, and 

2343 restricting much of the primary production to the shallow, open water moat. Many other 

2344 physical, chemical and biological changes occur in lakes that are either directly or 

2345 indirectly affected by snow and ice cover (see Table 1; Douglas and Smol 1999). 

2346 Modified from Smol (1988). 

2347 
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2347 

2348 

2349 

2350 Figure 5.18 Lake ice melts as it continues to warm (A – D). Eventually, in deeper lakes 

2351 (vs ponds) thermal stratification may also occur (or be prolonged) during the summer 

2352 months (D), further altering the limnological characteristics of the lake. Modified from 

2353 Douglas (2007). 

2354 
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2355 

2356 Figure 5.19 The form and distribution of wind-blown silt (loess), wind-blown sand 

2357 (dunes), and other deposits of wind-blown sediment in Alaska, have been use to infer 

2358 both Holocene and last-glacial past wind directions. (Compiled from multiple sources by 

2359 Muhs and Budahn, 2006). 

2360 
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2360 

2361 Figure 5.20 At this unnamed, hydrologically closed lake in the Yukon Flats Wildlife 

2362 Refuge in Alaska, concentric rings of vegetation have developed progressively inward as 

2363 water levels lowered due to a negative change in the lake's overall water balance. Historic 

2364 Landsat imagery and air photographs indicate that these shorelines formed during the last 

2365 ~40 years. (Photo by Lesleigh Anderson) 
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2367 

2368 Figure 5.21 Recovered sections and palynological and geochemical results across the Paleocene-Eocene Thermal Maximum ~55 

2369 million yrs ago of IODP Hole 302-4A (87° 52.00' N; 136° 10.64' E; 1,288 m water depth, in the central Arctic Ocean basin). Mean 

2370 annual surface water temperatures (as indicated in the TEX86’ column) are estimated to have reached 23oC similar to waters in the 
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2371 tropics today. [Error bars for Core 31X show the uncertainty of its stratigraphic position. Orange bars indicate intervals affected by 

2372 drilling disturbance.] Stable carbon isotopes are expressed relative to the PeeDee Belemnite standard. Low-salinity-tolerant dinocysts 

2373 comprise Senegalinium spp., Cerodinium spp., and Polysphaeridium spp., while Membranosphaera spp., Spiniferites ramosus 

2374 complex, and Areoligera-Glaphyrocysta cpx. represent the typical normal marine species. Arrows and A. aug (second column) 

2375 indicate the first and last occurrences of dinocyst Apectodinium augustum – a diagnostic indicator of PETM warm conditions. (Sluijs 

2376 et al., 2006). 

Chapter 5 T&P History 10:02 AM, 8/8/08 119 



        
      

 

       

  

  

          

            

           

             

            

             

               

  

  

 

2377 

THIS DOCUMENT IS FOR PEER REVIEW ONLY 
DO NOT DISTRIBUTE, CITE, OR QUOTE 

2378 

2379 Figure 5.22 Atmospheric CO2 and continental glaciation 400 Ma to present. Vertical blue 

2380 bars mark the timing and palaeolatitudinal extent of ice sheets (after Crowley, 1998). 

2381 Plotted CO2 records represent five-point running averages from each of the four major 

2382 proxies (see Royer, 2006 for details of compilation). Also plotted are the plausible ranges 

2383 of CO2 from the geochemical carbon cycle model GEOCARB III (Berner and Kothavala, 

2384 2001). All data have been adjusted to the Gradstein et al. (2004) time scale. Extensive 

2385 growth of continental ice sheets occurs when CO2 is low. (source: Jansen, 2007: Figure 

2386 6.1) 

2387 

2388 

Chapter 5 T&P History 10:02 AM, 8/8/08 120 



        
      

 

       

  

  

   

  

          

          

             

         

            

          

            

          

            

            

           

   

2390 

Figure 2404 

THIS DOCUMENT IS FOR PEER REVIEW ONLY
 
DO NOT DISTRIBUTE, CITE, OR QUOTE
 

2388 

2405 

2406 Figure 5.23 The average isotopic composition (δ18O) of bottom-dwelling foraminifera 

2407 from a globally distributed set of 57 sediment cores covering the last 5.3 Ma (modified 

2408 from Lisiecki and Raymo, 2005). The δ18O is controlled primarily by global ice volume 

2409 and deep-ocean temperature, with less ice and/or warmer temperatures upward. The 

2410 influences of all the Milankovitch frequencies of Earth’s orbital variation are present 

2411 throughout, but the increase in glaciation about 2.7 Ma ago occurred with establishment 

2412 of a strong 41 ka variability linked to Earth’s obliquity (changes in tilt of Earth’s spiin 

2413 axis), and the additional increase in glaciation about 1.2-0.7 Ma involved a shift to 

2414 stronger 100 ka variability. Dashed lines are used because the changes seem to have been 

2415 somewhat gradual. The general trend toward higher δ18O that runs through this series 

2416 reflects the long-term drift toward a colder Earth that began in the early Cenozoic (see 

2417 Fig. 4.8). 
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2419 

2420 Figure 5.24 (a) Greenland without ice for the last time? Dark green: boreal forest, light green: deciduous forest; brown: tundra and 

2421 alpine heaths; white: ice caps. The north-south temperature gradient is constructed from a comparison between North Greenland and 
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2422 NW European temperatures, using standard lapse rate, and assuming precipitation distribution after the same pattern as known from 

2423 the Holocene. The topographical base comes from the model by Letreguilly et al. 1991 of Greenland’s sub-ice topography after 

2424 isostatic recovery. (b) Upper part of the Kap København Formation, North Greenland. The sand was deposited in an estuary 2.4 Ma 

2425 ago, and contains abundant well preserved leaves, seeds, twigs, and insect remains. (Photograph of S.V. Funder). 
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2426 

2427 

2428 Figure 5.25 The largely marine Gubik Formation on the North Slope of Alaska contains 

2429 three superposed lower units recording relative sea level as high +30-+40 m. Pollen in 

2430 these same deposits suggest that borderland vegetation at each of these times was less 

2431 forested with boreal forests or spruce-birch woodlands at 2.7 Ma giving way to larch and 

2432 spruce forests at about 2.6 and open tundra by ca. 2.4 Ma (see photos with oldest at the 

2433 top from Robert Nelson, Colby College who did the pollen work). Isotopic reference time 

2434 series of Lisecki and Raymo (2005) suggests best as assignments for these sea level 

2435 events (Brigham and Carter, 1992). 

2436 
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2436 

2437 Figure 5.26 Glacial cycles over the past 800ka derived from marine-sediment and ice 

2438 cores (McManus, 2004). The history of deep-ocean temperatures and global ice volume 

2439 is inferred from δ18O measured in bottom-dwelling foraminifera shells preserved in 

2440 Atlantic Ocean sediments. Air temperatures over Antarctica are inferred from the ratio of 

2441 deuterium to hydrogen in ice from central Antarctica (EPICA, 2004). Marine Isotope 

2442 Stage 11 (MIS 11) is an interglacial with similar orbital parameters to the Holocene, yet 

2443 lasted about twice as long as most interglacials. Note the smaller magnitude and less-
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2444 pronounced interglacial warmth of the glacial cycles that preceded MIS 11. 

2445 Interglaciations older than MIS 11 were less warm than subsequent integlaciations). 
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2447 

2448 Figure 5.27 Polar projection from CAPE Last Interglacial Project Members (2006) 

2449 showing regional maximum last interglacial (LIG) summer temperature anomalies 

2450 relative to present derived from paleotemperature proxies (see tables 1 and 2 in from 

2451 CAPE Last Interglacial Project Members, 2006). Terrestrial sites in circles, marine sites 

2452 in squares. 

2453 
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2454 

2455 

2456 Figure 5.28 Fossiliferous paleoshorelines and marine sediments were used by Brigham-

2457 Grette and Hopkins (1995) to evaluate the seasonality of coastal sea ice on both sides of 

2458 the Bering Strait during the Last Interglaciation. The winter sea limit is estimated to have 

2459 been north of the narrowest section of the strait, 800 km north of modern limits. Lozhkin 

2460 and Anderson (1995) suggest from pollen data derived from Last Interglacial lake 

2461 sediments that tundra was nearly eliminated from the Russian coast at this time. More 

2462 open water resulted in an increase in some taxa tolerant of deeper winter snows in 

2463 Chukokta during the warm interglaciation. (Map of William Manley 

2464 http://instaar.colorado.edu/QGISL/). 

2465 
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2466
 

2467 Figure 5.29 The Arctic Holocene Thermal Maximum (HTM) as expressed in a
 

2468 comparison of seasonal insolation patterns at 70° N (Berger & Loutre 1991),
 

2469 reconstructed Greenland air temperature from the GISP2 drilling project (Alley 2000),
 

2470 the age distribution of radiocarbon-dated fossil remains of different tree genera from
 

2471 north of present treeline (MacDonald et al., 2007), and the frequency of Western Arctic
 

2472 sites experiencing HTM conditions.
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2474 Figure. 5.30 The timing of initiation and termination of the HTM in the Western Arctic (Kaufman et al., 2004).
 

2475 a. Regions reviewed in Kaufman et al. 2004
 

2476 b. Initiation of the Holocene thermal maximum in the western Arctic. Longitudinal distribution (left) and frequency distribution
 

2477 (right)
 

2478 c. Spatio-temporal pattern of the Holocene thermal maximum (HTM) in the western Arctic. Initiation (upper) and termination (lower)
 

2479 of the HTM. Gray dots indicate equivocal evidence for the HTM. Dot colors indicate bracketing ages of the HTM, which are
 

2480 contoured using the same color scheme.
 

2481
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2483 

2484 

2485 Figure. 5.31 The northward extension of larch (Larix) across the Eurasian Arctic during 

2486 the HTM compared to present treeline larch forest distribution and anticipated (Arctic 

2487 Climate Impact Assessment, 2005) northern forest limits due to climate warming 

2488 (MacDonald et al., 2007). 

Chapter 5 T&P History 10:02 AM, 8/8/08 132 



        
      

 

       

  

             

              

        

THIS DOCUMENT IS FOR PEER REVIEW ONLY 
DO NOT DISTRIBUTE, CITE, OR QUOTE 

2489 

2490 Fig. 5.32 Upper panel: The record of summer melting on the Agassiz Ice Cap, northern 

2491 Ellesmere Island, Canada over the course of the Holocene. Melt indicates the fraction of 

2492 each core section containing evidence of melting (from Koerner and Fisher, 1990). 
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2493 Middle panel: Summer temperature anomalies estimated from the elevation of 14C dated 

2494 sub-fossil pine wood samples (Pinus sylvestris L.) in the Scandes mountains, central 

2495 Sweden (black bars) relative to temperatures at the modern pine limit in the region. 

2496 Upper limit of pine growth is indicated by the dashed line. Changes in temperature were 

2497 estimated by assuming a lapse rate of 6 °C km-1 (from Dahl and Nesje 1996, based on 

2498 samples collected by L. Kullman and G. and J. Lundqvist). Lower panel: 

2499 Paleotemperature reconstruction from oxygen isotopes in calcite sampled along the 

2500 growth axis of a stalagmite from a cave at Mo i Rana, in northern Norway. Growth 

2501 ceased around A.D. 1750. (from Lauritzen 1996; Lauritzen and Lundberg 1998; 2002). 

2502 Figure from Bradley (2000). 

2503 
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2503 
2504 

2505 
2506 
2507 Figure 5.33 Schematic diagrams of temperature variations over the past thousand years. 

2508 The dotted line nominally represents conditions near the beginning of the twentieth 

2509 century. From the IPCC AR1 (Fig. 7.1; 1990). Recent reviews (e.g. Bradley et al., 2003) 

2510 suggest that this curve probably is most representative of the northern North Atlantic 

2511 region rather than a reflection of global temperature. 

2512 
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2512 

2513 Figure 5.34 Paleoclimate data quantify the magnitude of Arctic amplification. Shown 

2514 are paleoclimate estimates of Arctic summer temperature anomalies relative to recent, 

2515 and the appropriate northern-hemisphere or global summer temperature anomalies, 

2516 together with their uncertainties, for the last glacial maximum (LGM; ~20 ka ago), 

2517 Holocene thermal maximum (HTM; ~8 ka ago), last interglaciation (LIG; 130-125 ka 

2518 ago) and middle Pliocene (~3.5-3.0 Ma ago). The trend line suggests that summer 

2519 temperature changes are amplified 3 to 4 times in the Arctic. Explanation of data sources 

2520 follows for the different times considered beginning with the most recent. 

2521 
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2522 Holocene Thermal Maximum (HTM): Arctic ΔT = 1.7 ± 0.8 °C; NH ΔT = 

2523 0.5 ± 0.3 °C; Global ΔT = 0 ± 0.5 °C. 

2524 A recent summary of summer temperature anomalies for the western Arctic (Kaufman et 

2525 al., 2004) built on earlier summaries (Kerwin et al., 1999; Cape Project Members, 2001), 

2526 and is consistent with more-recent reconstructions (Kaplan and Wolfe, 2006; Flowers et 

2527 al., 2007). Although the Kaufman et al. (2004) summary covered only the western half 

2528 of the Arctic, the earlier summaries by Kerwin et al., (1999) and Cape Project Members 

2529 (2001) indicated that similar anomalies characterized the Eastern Arctic, with all 

2530 syntheses reporting the largest anomalies in the North Atlantic sector. Few data are 

2531 available for the central Arctic Ocean; we assume that the circumpolar dataset provides 

2532 an adequate reflection of air temperatures across the Arctic Ocean as well. 

2533 Climate models that closely match paleoclimatic data (see text) indicate that the 

2534 average planetary anomaly was concentrated over the Northern Hemisphere. Braconnot 

2535 et al. (2007) summarized the simulations from 10 different climate-model contributions 

2536 to the PMIP2 project that compare simulated summer temperatures 6 ka ago with recent 

2537 values. The global average summer temperature anomaly 6 ka ago was 0 ± 0.5 °C, 

2538 whereas the Northern Hemisphere anomaly was 0.5 ± 0.3 °C. These patterns are similar 

2539 to model results described by Hewitt and Mitchell (1998) and Kitoh and Murakami 

2540 (2002) for 6 ka ago, and a global simulation for 9 ka (Renssen et al., 2006), that simulate 

2541 little summer temperature difference outside the Arctic when compared to pre-industrial 

2542 temperatures. 

2543 

2544 Last Glacial Maximum (LGM): Arctic ΔT = -20 ± 5 °C; Global and Northern 

2545 Hemisphere ΔT = -5 ± 1 °C 

2546 Quantitative estimates of temperature reductions during the peak of the LGM are less 

2547 widespread in the Arctic than during warm times. Ice-core borehole temperatures offer 

2548 the most compelling evidence (Cuffey et al., 1995; Dahl-Jensen et al., 1998), with 

2549 additional support from biological proxies in the North Pacific sector (Elias et al., 1996a), 

2550 where no ice cores are available that extend back to the LGM. Because of the limited 

2551 datasets for the LGM temperature reduction in the Arctic, we incorporate a large 
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2552 uncertainty. The global-average temperature decrease during peak glaciations based on 

2553 paleoclimate proxy data was 5 to 6 °C, with little difference between the two hemispheres 

2554 (Jansen et al., 2007; Farrera et al., 1999; Braconnot et al., 2007). A similar temperature 

2555 anomaly is derived from climate model simulations (Otto-Bliesner et al., 2007). 

2556 

2557 Last Interglaciation (LIG): Arctic ΔT = 5 ± 1 °C; Global and NH ΔT = 1 ± 1 

2558 °C) 

2559 A recent summary of all available quantitative reconstructions of summer temperature 

2560 anomalies for the Arctic during peak LIG warmth shows a spatial pattern similar to the 

2561 HTM reconstructions, with the largest anomalies in the North Atlantic sector and the 

2562 smallest anomalies in the North Pacific sector, but with substantially larger anomalies (5 

2563 ± 1 °C) than during the HTM (CAPE Last Interglacial Project Members, 2006). A 

2564 similar pattern of LIG summer temperature anomalies is apparent in climate model 

2565 simulations (Otto-Bliesner et al., 2006). Global and Northern Hemisphere summer 

2566 temperature anomalies are derived from summaries in CLIMAP Project Members (1984), 

2567 Crowley (1990), Montoya et al. (2000) and Bauch and Erlenkeuser (2003). 

2568 

2569 Middle Pliocene: Arctic ΔT = 12 ± 3 °C; Global ΔT = 4 ± 2 °C) 

2570 The widespread occurrence of forests throughout the Arctic in the middle Pliocene offers 

2571 a glimpse into a notably warm time in the Arctic, with essentially modern continental 

2572 configurations and connections between the Arctic Ocean and the global ocean. 

2573 Reconstructed Arctic temperature anomalies are available from several sites that show 

2574 much warmth with no summer sea ice in the Arctic Ocean basin. These sites include the 

2575 Canadian Arctic Archipelago (Dowsett et al., 1994; Elias and Matthews, 2002; 

2576 Ballantyne et al., 2006), Iceland (Buchardt and Símonarson, 2003), and the North Pacific 

2577 (Heusser and Morley, 1996). A global summary of mid-Pliocene biomes by Salzmann et 

2578 al. (2008) concluded that Arctic mean-annual-temperature anomalies were in excess of 10 

2579 °C; some sites indicate temperature anomalies up to 15 °C. Estimates of global sea-

2580 surface temperature anomalies are from Dowsett (2007). 

2581 
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2582 Global reconstructions of mid Pliocene temperature anomalies from proxy data and 


2583 general circulation models show modest warming across low to mid-latitudes, averaging 


2584 4 ± 1 °C (Dowsett et al., 1999; Raymo et al.,. 1996; Sloan et al., 1996, Budyko et al.,
 

2585 1985; Haywood and Valdes, 2004; Jiang et al. 2005; Haywood and Valdes, 2006;
 

2586 Salzmann et al., 2008).
 

2587
 

2588
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